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ABSTRACT

In this paper, a conjugate gradient method on the complex Graßmann
manifold is proposed that computes the k-principal components of a
Hermitian (n×n)-matrix. The algorithm is at most of orderO(n2k)
and yields locally good convergence results.

Index Terms— Conjugate gradient methods, Principal compo-
nent analysis, Block diagonalization, Hermitian matrices, Graßmann
manifold

1. INTRODUCTION

A typical subproblem in array signal processing is the task of esti-
mating the direction of arrival of signals. In order to determine the
direction of arrival of k signals, as a subtask one has to determine the
dominant subspace of the complex correlation matrix arising from
data samples. This paper proposes an algorithm that computes this
so-called signal space. In contrast to established algorithms (cf. e.g.
[1, 8, 9]), the method here is based on the concept of geometric
optimization. Exploiting the intrinsic structure of the problem lets
us expect that the resulting algorithm is very accurate and robust to
rounding errors. Following the ideas of Gabay (1982) [2], see also
Smith (1994) [6], a conjugate gradient (CG) method on the com-
plex Graßmann manifold is presented that computes the subspace
corresponding to the k largest eigenvalues of a Hermitian matrix. A
one-to-one implementation of the algorithms in [2] and [6], however,
leads to far too expensive algorithms. Computing the geodesics or
the parallel transport of a tangent vector on the complex Graßmann
manifold requires for each algorithmic step the eigenvalue decom-
position of a skew-Hermitian matrix having the same size as the cor-
relation matrix itself and hence might be of higher complexity than
the actual problem. Moreover, an exact computation of the step-size
is in practice often out of reach. Here, we modify and specify the
algorithm by using a second order approximation of the Riemannian
exponential via QR-decompositions and a step size which is cheap
to compute. Ultimately, this leads to an algorithm that maintains the
geometric structure of the problem and is cheap.

National ICT Australia is funded by the Australian Government’s De-
partment of Communications, Information Technology and the Arts and the
Australian Research Council through Backing Australia’s Ability and the ICT
Research Centre of Excellence programs.

2. PRELIMINARIES

Denote the set of unitary matrices by

Un := {U ∈ C
n×n | U†U = In}, (1)

where (·)† denotes conjugate transpose and In is the (n×n)-identity
matrix. Furthermore, let

un := {Ω ∈ C
n×n | Ω† = −Ω} (2)

be the set of skew-Hermitian matrices. Our CG algorithm is based on
the maximization task of a cost function on the complex Graßmann
manifold, which we identify with the set of all rank k Hermitian
projectors, i.e.

Grk,n := {UNU† | U ∈ Un}, (3)

where N =
ˆ

Ik 0
0 0

˜
. We refer to [4] for the construction

of a natural diffeomorphism between Grk,n defined as above and
the set of all k-dimensional complex subspaces of C

n and the fact
that Grk,n can be considered as a submanifold of the set of (n× n)
Hermitian matrices. The tangent space at P ∈ Grk,n is given by

TP Grk,n = {[P, Ω] | Ω ∈ un} (4)

with matrix commutator [A, B] := AB−BA. Endowing TP Grk,n

with the inner product

g : TP Grk,n × TP Grk,n → R, (ξ, η) �→ �tr(ξη) (5)

turns Grk,n into a Riemannian manifold. The geodesic through P
in direction ξ and hence the Riemannian exponential map are given
by

γξ(t) = et[ξ,P ]P e−t[ξ,P ], where ξ ∈ TP Grk,n. (6)

The parallel transport of η ∈ TP Grk,n with respect to the Levi-
Civita connection along the geodesic γξ(t) is given by

η(t) = et[ξ,P ]ηe−t[ξ,P ]. (7)

3. SECOND ORDER APPROXIMATION OF THE
RIEMANNIAN EXPONENTIAL

CG-methods for maximizing a smooth function in R
n or C

n are well
established tools in numerical optimization, cf. [5]. Their general-
izations to Riemannian manifolds, however, require the concept of
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the Riemannian exponential function, [2, 6]. In this section, we pro-
pose a second order approximation for the Graßmannian case that,
in contrast to a Taylor Series approach for approximating matrix ex-
ponentials, maintains the structure of the problem, i.e. ensures in a
simple way that each iterate stays on the manifold.

LetRn be the set of complex invertible upper triangular (n×n)-
matrices with real but positive entries on the diagonal and let Gln :=
{X ∈ C

n×n | X is invertible}. It follows from the Gram-Schmidt
orthogonalization procedure that the map

Un ×Rn → Gln, (Q, R) �→ QR (8)

is a diffeomorphism onto. According to Eq. (8) every X ∈ Gln
decomposes uniquely into

X =: XQXR (9)

with XQ ∈ Un and XR ∈ Rn. Furthermore, as an infinitesimal
version of the above theorem, every complex (n × n)-matrix de-
composes uniquely into the sum of a skew-Hermitian and an upper
triangular matrix with real entries on the diagonal. We write

X =: Xskew + Xupp (10)

with Xskew ∈ un and Xupp upper triangular with real diagonal en-
tries. The following lemma yields the desired approximation of the
Riemannian exponential mapping. Note that our approach does not
approximate the matrix exponential up to second order, only up to
first order, but the Riemannian exponential mapping, defined by (6)
is indeed approximated to second order.

Lemma 1. The map

qΩ : R → Un, t �→ (I + tΩ)Q (11)

is smooth for all Ω ∈ un. Moreover,

q̇Ω(0) = Ω, q̈Ω(0) = (Ω2)upp. (12)

Proof. For simplicity reasons we will drop the subscript Ω through-
out the proof. As Ω is skew-Hermitian, all eigenvalues of I + tΩ
have real part equal to 1 and hence I + tΩ is invertible. Therefore,
q(t) as well as

r : R → R, t �→ (I + tΩ)R (13)

are smooth by the above observation. Now I + tΩ = q(t)r(t).
Differentiating this equation with respect to t yields

Ω = q̇(t)r(t) + q(t)ṙ(t). (14)

Since

r(0) = q(0) = I (15)

it follows that

Ω = q̇(0) + ṙ(0). (16)

Now q̇(0) ∈ un and ṙ(0) is upper triangular and therefore

q̇(0) = Ω and ṙ(0) = 0. (17)

For the computation of the second derivative we multiply Eq. (14)
from the left with q†(t) and from the right by r−1(t) to obtain

q†(t)Ωr−1(t) = q†(t)q̇(t) + ṙ(t)r−1(t). (18)

Here the right hand side is again the unique decomposition into the
sum of a skew-Hermitian and an upper triangular matrix with posi-
tive diagonal entries. It follows that

q̇(t) = q(t)
“
q†(t)Ωr−1(t)

”
skew

(19)

and hence using (15) and (17)

q̈(0) = d
dt

q(t)
`
q†(t)Ωr−1(t)

´
skew

˛̨
˛
t=0

= q̇(0)
“
q†(0)Ωr−1(0)

”
skew

+ q(0)
“
q̇†(0)Ωr−1(0)−q†(0)Ωr−1(0)ṙ(0)r−1(0)

”
skew

= Ω(Ω)skew+(−Ω2)skew =Ω2−(Ω2)skew =(Ω2)upp.

By the above lemma a second order accurate approximation of
the geodesic (6) in a neighborhood of P ∈ Grk,n now follows.

Corollary 2. Let ξ ∈ TP Grk,n and q[ξ,P ](t) defined as in Eq. (11).
The curve

αξ : R → Grk,n, t → q[ξ,P ](t)Pq[ξ,P ](t)
†

(20)

is a second order approximation of the geodesic (6) around P , i.e.
the identities

αξ(0) = γξ(0),

α̇ξ(0) = γ̇ξ(0),

α̈ξ(0) = γ̈ξ(0)

(21)

hold.

4. THE CG-ALGORITHM

The CG method consists essentially of two steps. That is, line search
in a given direction and the computation of the subsequent direction.
For the task of maximizing a smooth function f on Grk,n schemat-
ically we have the following.

CG-Sweep. Let P0 ∈ Grk,n be given.
Set H0 := ∇f(p0) (the Riemannian gradient).
Then for i = 0, ..., N − 1 (N := dim Grk,n)

• (Line-Search)
Compute λi ∈ R and set Pi+1 = αH0(λi)

• (Direction)
Compute Hi+1 according to a Riemannian adaption of the
Hestenes-Stiefel-Formula or another formula known from the
Euclidian case, cf. [5].

CG-Algorithm. Iterate the CG-sweeps.

4.1. Line Search

The CG-algorithm proposed in [2] and [6] requires an exact line
search along γHi(t), i.e. finding the maximum of f ◦ γHi(t) that
is closest to 0. In practice, however, this is often not feasible, since
either no closed form solution exists or, if it does, its computation is
too expensive. Here, we replace the geodesic γHi(t) by the approx-
imation (20), which is only given implicitly. Hence there will be no
closed formula for an exact line search, no matter which function is
to be optimized.
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Nonetheless, since we consider our optimization task to be a
local one, it is reasonable to assume that in an appropriate neighbor-
hood of 0 the only critical point of f ◦ αHi(t) is a local maximum.
Therefore, we can expect that a one-dimensional Newton-step lo-
cally yields acceptable convergence results, i.e.

λi := −
d
dt

˛̨
t=0

f ◦ αHi(t)

d2

dt2

˛̨
t=0

f ◦ αHi(t)
. (22)

Note, that for a strictly convex quadratic function in the Euclidian
space, this corresponds to an exact line search.

4.2. Conjugate Directions

According to Eq. (7), the parallel transport along the approximation
of the geodesics αH , H ∈ TP Grk,n is given by

τξ := q[H,P ](λi)ξq[H,P ](λi)
†

(23)

We shortly denote∇f(Pi) = Gi. The direction update is given by

Hi+1 = −Gi+1 + γiHi,

where several choices for γi are common. In the following, we give
manifold adaptions for the four most common formulas and propose
one formula that seems to be new.

γHS
i =

�tr(Gi+1(Gi+1 − τGi))

�tr(τHi(Gi+1 − τGi))
(Hestenes-Stiefel)

γPR
i =

�tr(Gi+1(Gi+1 − τGi))

‖Gi‖2 (Polak-Ribière)

γFR
i =

‖Gi+1‖2
‖Gi‖2 (Fletcher-Reeves)

γDY
i =

‖Gi+1‖2
�tr(τHi(Gi+1 − τGi))

(Dai-Yuan)

γ∗i = −�tr(Gi+1(Gi+1 − τGi))

�tr(HiGi)

(24)

Note, that although all of the above formulas are generalizations of
the linear conjugate gradient method, the only formula that is mo-
tivated for inexact line search in the Euclidian case is the one of
Hestenes-Stiefel, cf. [5]. It can also be shown that for our proposed
step size (22), the term �tr(τHiGi+1) is negligible, leading to a
motivation for γ∗i .

We can use a result in [7] to show that using step size (22) to-
gether with the formula γ∗i or γHS

i in the Euclidian case leads -
under some additional assumptions on the cost function - to N -step
quadratic convergence. For a proof we refer to a forthcoming paper
by the authors. We therefore have reason to assume, that this also
holds in the manifold case.

Conjecture: Let f be a smooth function on Grk,n with nondegener-
ate maximum Z. If the CG-method with step-size selection (22) and
direction update λ∗i or λHS converges to Z, then this convergence is
N -step quadratically fast (where N = dim Grk,n), i.e.

‖Pi+N − Z‖ ≤ constant ‖Pi − Z‖2

for all i large enough, where (Pi)i∈N denotes the sequence generated
by the algorithm.

4.3. Cost Function

Let A = A†. A suitable cost function for our purpose is

f : Grm,n → R, P �→ �tr(PA). (25)

Proposition 3. The Riemannian gradient and the Riemannian Hes-
sian operator of f are given by

∇f(P ) = [P, [P, A]], Hf(P )(F ) = −[P, [A, F ]], (26)

where F ∈ TP Grm,n. Moreover,

(a) P = θNθ† is critical point of f if and only if Ã = U†AU is
blockdiagonal, i.e.

Ã =

»
A11 0
0 A22

–
,

where A11 is Hermitian (k × k) and A22 is Hermitian (n −
k)× (n− k).

(b) P is a maximum of f if and only if tr A11 =
Pm

i=1 λi, where
λ1 ≥ · · · ≥ λn are the eigenvalues of A. This maximum is
unique on Grm,n if λm > λm+1.

Proof. Details can be found in a forthcoming paper on Newton’s
method for Graßmannians by U. Helmke, K. Hüper and J. Trumpf.

4.4. Implementation

Let Stk,n := {u ∈ C
n×k | u†u = Ik}. For an implementation we

exploit the fact that

Grk,n = {uu† | u ∈ Stk,n}.
Moreover, it is easily checked that for arbitrary X ∈ C

n×n and
P ∈ Grk,n the identity

[P, [P, [P, X]]] = [P, X] (27)

holds and hence

[P, [P, ξ]] = ξ, for all ξ ∈ TP Grk,n. (28)

Note, that since P = uu†, the commutator [P, X] = PX − XP
can be computed in O(n2k) steps.

The proposed algorithm has order O(n2k). It is of local nature
and provides good results if the columns of the initial matrix u0 ∈
Stk,n are close to the principal components of the Hermitian matrix
A.

Algorithm 1 (CG-sweep). For a given estimation u0 ∈ Stk,n of the
principal components of a Hermitian matrix A, this algorithm over-
writes u0 with ul−1 such that ul−1 is a (much) better approximation
of the principal components of A.

• Set P0 = u0u
†
0 and set Ω0 = [P0, A], G0 := [P0, Ω0],

H0 := −G0.

• For i = 0, ..., l − 1:

(s1) Set Δ := (Ω2
i )upp, set

γ′(0) := � tr(PiAΩi)

γ′′(0) := � tr(ΔPiA)−� tr(ΩPΩA)
(29)

and, according to Eq. (22) and Lemma 1,

λi := − γ′(0)

γ′′(0)
. (30)
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(s2) Let Q := (I + λiΩ)Q; update ui+1 := Qui and

Pi+1 = ui+1u
†
i+1 and set

τGi := QGiQ
†

τΩi := Q[Hi, Pi]Q
†

τHi := [τΩi, Pi+1]
Gi+1 := [Pi+1, [Pi+1, A]].

(s3) Compute γi according to one of the formulas in Eq.
(24) and set
Hi+1 := −Gi+1 + γiτHi

Ωi+1 = [Hi+1, Pi+1].

Notice, that the computation of Q in step (s2) can be performed
in O(n2k) floating point operations. We shortly sketch how this
can be achieved. Since Ω is at most of rank 2k, an amount of
(2k + 1)n− (2k + 1)(2k + 2)/2 Givens rotations suffice to obtain
Hessenberg form, for example by annihilating matrix entries column
wise from bottom to one under the diagonal. These rotations only
depend on the lower triangular entries of Ω and the same rotations
compute a Hessenberg form of I + Ω. A subsequent annihilation of
the remaining 2k + 1 entries on the subdiagonal completes the QR-
computation. The multiplication of the Givens rotations then results
in O(n2k + k2n) flops. See also [3] for how to use Givens rotations
for computing the QR-factorization.

5. NUMERICAL SIMULATIONS AND DISCUSSION

Several simulations have been performed for the different choices of
γi in Eq. (24). The Hermitian matrix A ∈ C

n×n has been chosen to
be nearly blockdiagonal with the dominant eigenvalues in the upper
block in order to assure that u0 =

ˆ
Ik
0

˜
is a good approximation of

the principal components. In the following, k was chosen to be k =
5, while 3 different choices for n have been implemented, namely
n1 = 50, n2 = 100, n3 = 150. For the simulations, the matrix u
has been extended to an orthonormal basis θ = [u, v] of C

n and the
stopping criterion has been chosen to be

blockoff (θ∗Aθ) ≤ 10−20,

where

blockoff (A) =
X

k<i≤n, 1≤j<k

(Aij)
2.

The number of steps needed until the stopping criterion was fulfilled
is given in Table 1 for the different choices of γi and ni.

Table 1. Number of steps for the different choices of γi until
blockoff≤ 10−20. In all experiments, k = 5.

γHS
i γPR

i γFR
i γDY

i γ∗i

n1 = 50 11 12 15 16 12

n2 = 100 12 12 30 35 13

n3 = 150 15 16 > 100 > 100 16

Our observations can be summarized as follows. The formula
of Hestenes and Stiefel, Polak-Ribière and γ∗i perform equally well,
with a slight advantage on the Hestenes-Stiefel formula. These cases
confirm the well known behavior of CG-methods, cf. [5], that only
very few steps within one sweep are required to obtain satisfactory

results. Moreover, it seems that the number of required steps only in-
creases very slowly with the size of the problem. The proposed man-
ifold adaptions of the formulas of Fletcher-Reeves and Dai-Yuan,
however, turn out not to be suitable for the considered problem.

Finally, we would like to mention that numerical simulations
support global convergence of the algorithm, if the step-size (30) is
slightly modified into

λ̃i :=
γ′(0)

|γ′′(0)| . (31)

Note, that locally around a nondegenerate maximum of f we have
γ′′(0) ≤ −δ < 0. Hence locally, this modification does not change
the algorithm.
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