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ABSTRACT
Algorithms for adapting orthogonal matrices in optimization
and signal processing typically employ the geometry of either
the Grassmann manifold or the Stiefel manifold depending
on the chosen cost function. In this paper, we develop gradi-
ent adaptive algorithms that use the geometry of both mani-
folds in their operation. Such algorithms offer a straightfor-
ward way to mitigate numerical error accumulation due to dis-
cretization of the coef cient updates. Examples drawn from
subspace tracking and eigenvector analysis illustrate the use-
fulness of the design methods.

Index Terms— Grassmann manifold, orthogonality con-
straints, Stiefel manifold, subspace tracking.

1. INTRODUCTION

Consider the following task: Compute a real-valued �����,
� � � matrix� to

maximize � ��� (1)

such that ��� � �� (2)

where � ��� is a cost function. This general optimization
problem is important for numerous problems in numerical lin-
ear algebra and signal processing, including subspace track-
ing and independent component analysis [1]–[9]. The above
task induces a useful geometry to the parameter space known
as the Grassmann manifold for row homogeneous cost func-
tions in which ������� � ����� for all �� and the
Stiefel manifold for row inhomogeneous cost functions in
which ������� �� ����� for some ��, where �� is
an �� � �� orthonormal and invertible matrix (���

�

� �
����� � �). By employing Riemannian geometry, adaptive
procedures can be developed for solving (1)–(2) that have use-
ful properties, such as computational simplicity or fast con-
vergence; see [1]–[9] for examples.

When designing iterative algorithms to solve (1)–(2) espe-
cially for tracking applications, numerical effects can cause a
loss of system performance and even divergence of the ma-
trix estimate ��. This issue has led to the development of
ad hoc stabilization methods involving additional correction
terms within the coef cient updates [3, 8], or projection meth-
ods to impose (2) at each iteration [6, 10]–[12]. Geometrical

insight into these numerical dif culties has not been given in
the scienti c literature, nor has any general strategy for stabi-
lizing such algorithms been described for arbitrary tasks.

In this paper, we consider the design of simple gradient
adaptive algorithms for solving (1)–(2) for inhomogeneous
cost functions that largely avoids numerical dif culties in al-
gorithm implementation. The key idea in this study is to
mathematically represent� as

� � ��� (3)

where the �� � �� matrix � and �� � �� matrix � are
adapted on the Stiefel and Grassmann manifolds, respectively.
This representation enables one to design simple, ef cient nu-
merical stabilization methods for �� as well as solve op-
timization problems that would otherwise be challenging to
solve using (1)–(2). Numerical examples drawn from sub-
space tracking and eigenvector analysis illustrate the useful-
ness of the methods.

2. MATHEMATICAL PRELIMINARIES

Consider the orthonormal matrix� at time �. The differen-
tial gradient update of� that attempts to maximize �����
in the Stiefel manifold is given by

��

��
� ��

�
�� ���

�

��� (4)

where �� � ��� ������ is the Euclidean gradient of the
cost function with respect to� [4]. Eq. (4) maintains

������ ��� � ������ ��� (5)

for all time � � �. Therefore, if���� has orthonormal rows,
������ ��� is identity for all time.

The update in (4) can be written as

��

��
� �

�
���� ��

�

�
�

�
� (6)

where ���� � �
�

�
� is a skew-symmetric matrix. The

multiplicative nature of this update is one of its critical fea-
tures [9]. Since the skew-symmetric matrix������

�

�
�

multiplies � on the right, this update causes the rows of

IV  14011424407281/07/$20.00 ©2007 IEEE ICASSP 2007



� to rotate with time. As (4) computes geodesics on the
Stiefel manifold, no numerical approximation to this compu-
tation has been or needs to be assumed at this point.

Consider now the column-wise Stiefel update given by

��

��
� ���

�
� ����

�
�� (7)

Comparing (7) with (4), we see that the role of the rows and
columns of � in the constraint space has changed. Eq. (7)
maintains the constraint

�
� ������� � �

� �������� (8)

If ���� has orthonormal rows, then �� ������� is a con-
stant projection matrix for all � � � for � � �. The row span
of���� does not change with time using this update.

Consider a homogeneous cost function����� to be max-
imized with respect to � under the constraint ��� �
�. Adaptation of� in the Grassmann manifold can be per-
formed using

��

��
� ��

�
�� ����

�
�� (9)

where �� � ������	�� [4]. This update also main-
tains��� as a constant matrix. If������ ��� � �, then
��

� � � for all time � � �, like the algorithm in (4). In
such cases, we can write this as the multiplicative update

��

��
� �

�
�

�
��

� �
����

�
�
� (10)

where �����
�� is a projection matrix.

Note that it makes no sense to consider the analogous al-
gorithm to (7) in the Grassmann manifold. The Grassmann
manifold is only appropriate in problems where the orienta-
tions of the rows of� do not matter. A consequence of this
fact is that (9) is only useful in situations where � � � such
that the linear row span of � describes an �-dimensional
subspace.

3. COMBINED ADAPTATION IN THE GRASSMANN
AND STIEFEL MANIFOLDS

The algorithms in (7) and (10) are complementary. Eq. (7)
adjusts the orientations of the columns of� while maintain-
ing ��

� as a constant matrix, whereas Eq. (10) adjusts
the orientations of the rows of� while maintaining�� �

as a constant matrix. It makes sense to combine these two
algorithms. We can derive the combined algorithm by set-
ting���� � ��������, where the �� � �� matrix���� is
adapted using the Stiefel manifold update

��

��
�

�
���

� ���
�

�

�
�� (11)

and the ����� matrix���� is adapted using the Grassmann
manifold update

��

��
� ����

���
�
����

�
�
� (12)

In each case, we have computed the gradients

�� �
��� ����

��
� ���

� (13)

�� �
�������

��
� �

�
��� (14)

Thus, we have

��

��
�

��

��
� ��

��

��
(15)

which using (11)–(14) simpli es to

��

��
�

�
���

�����

�

�
������

�������
�
���

(16)
The differential update in (16) has several features:

1. It combines two different differential updates as a linear
sum of their respective forms.
2. The rst term on the right-hand side of (16) spans the row
space of� at time �.
3. The last term on the right-hand side of (16) moves � in
the null space of� at time �.
4. The cost functions being optimized for each term do not
need to be the same.

This last point is worthy of further justi cation. To a ca-
sual observer, the use of both the Grassmann and Stiefel man-
ifolds may seem redundant. Why bother with adaptation in
subspaces when the goal is to identify orthonormal matrices?
The answer can be inferred by study of the original Stiefel
manifold differential update in (4). Consider the portions of
this differential update inside and outside of the current sub-
space estimate, which we can obtain by multiplying the right-
hand side of (4) by the matrix

�
���

�� � �� ���
��

�
.

After simpli cation, we obtain

��

��
� ���

�
�����

������
������

�
���

(17)
Comparing (17) and (16), we see that they differ only in the
use of different Euclidean gradients in their second terms. In
other words, (16) performs adaptation in the Stiefel manifold
if the same inhomogeneous cost function is employed both
within and outside the current subspace estimate represented
by the row span of�.

We can now turn the question around: Why use the same
cost function within and outside the subspace being identi-
ed? Such a restriction is unnecessary given the differential

algorithm in (16). We can apply two different costs – cor-
responding to two different goals – to adjust � within and
outside the subspace represented by the row span of�. The
new algorithm preserves the orthonormality of the rows of�
as does the Stiefel manifold update, and it gives an additional
design freedom to the user.
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4. ALGORITHM DESIGN EXAMPLES

One of the classic tasks in subspace analysis is eigenvector
estimation. Given a symmetric positive de nite matrix � of
dimension ����� with distinct eigenvalues, nd the� eigen-
vectors corresponding to the � largest or smallest eigenval-
ues.

One can divide this task into two sub-tasks: (1) identify
the �-dimensional subspace spanned by the desired eigen-
vectors, and (2) nd the distinct vectors within this subspace.
The update developed in the last section can be used in this
regard. Consider the following cost functions:

����� � �
�

�
��tril����� ����� (18)

����� �
�

�
tr����� �� (19)

where tril��� denotes the strictly lower triangular portion of
the square matrix�. The cost ����� is similar to that used
in [9] for eigenvector estimation, and its negative sign leads
to minimization of the absolute value of this cost. The cost
����� is well-known for subspace tracking tasks. It can be
shown that ����� is inhomogeneous and ����� is homo-
geneous. The gradients of these cost functions are

�� � �tril����� ��� (20)

�� � ��� (21)

In order to implement the algorithm, we approximate differ-
entials by nite differences using the forward Euler integra-
tion scheme, so that (16) becomes

�� � �tril�����
�
� ���� (22)

���� � �� � �
�
���

�
� ����

�
�

�
��

� �����
�
����������

���� (23)

Here, � is a constant step size value.
Fig. 1 shows the convergence of the three errors

�
���
� �

������
�
� � ������

�
� ��

�
�

��������
�
� ��

�
�

(24)

�
���
� �

������ � ������
�
� ��

�
�

����������
(25)

�
���
� � �������

�
� ��

�
� � (26)

where � denotes element-by-element multiplication of ma-
trix entries and� is given by

� �

�
�����

��	 ��
 
�� 
�� ���
��
 �� ��� ��� ���

�� ��� ��� 
�� 
��

�� ��� 
�� ��� 
��
��� ��� 
�� 
�� ���

�
�����
� (27)

� � 
�

�, � � �, � � �, and ���� is a diagonal matrix
containing the� largest eigenvalues in decreasing magnitude
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Fig. 1: Evolutions of the errors in the rst simulation example.

along its diagonal. The rst error � ���
� is small when�� di-

agonalizes the matrix� in any �-dimensional subspace. The
second error ����

� is small when the rows of�� are aligned
in order with the eigenvectors of the � largest eigenvalues
of �. The third error ����

� is small when �� has orthonor-
mal rows. All three errors must be small to solve the problem
stated in the rst paragraph of this section. As can be seen,
all three errors converge to MATLAB’s machine precision;
the algorithm works as desired. Note that such an algorithm
would be dif cult and perhaps impossible to build with the
Stiefel manifold update in (17) alone, as nding a single in-
homogeneous cost whose maximization would yield both the
�-dimensional principal subspace and the ordered eigenvec-
tors within this subspace might be challenging.

A simple modi cation allows us to nd the eigenvectors
corresponding to the� smallest eigenvalues of� in the order
of their increasing magnitudes. Consider the cost functions

����� � �
�

�
��triu����� ����� (28)

����� � �
�

�
tr����� �� (29)

where triu��� denotes the strictly upper triangular portion of
the square matrix�. The design of the discretized approxi-
mation to (16) must be done with care due to numerical issues
associated with the Grassmann portion of the update, as is de-
scribed in [3]. The corresponding algorithm is

�� � �triu�����
�
� ���� (30)

���� � �� � �
�
���

�
� ����

�
�

�
��

� �
�
���

�
����

�
���������

�
���

�
�(31)

Figure 2 shows the convergence of the three errors ����
� ,

�
�	�
� , and ����

� for � � 
�

�, � � �, � � �, and � as in
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Fig. 2: Evolutions of the errors in the second simulation example.

(27), where

�
���
�

�
������ � ������

�

�
���
�

���������
�

(32)

and���� is a diagonal matrix containing the� smallest eigen-
values in increasing magnitude along its diagonal. All three
errors must be small to solve the problem stated in the rst
paragraph of this section. As can be seen, all three errors con-
verge to MATLAB’s machine precision; the algorithm works
as desired.

A similar algorithm to that in (31) could be developed us-
ing the Stiefel manifold differential update in (17) due to the
similarities of the cost functions in (28) and (29), respectively.
Such an algorithm could not be easily redesigned to solve the
principal eigenvector task or even to achieve smaller goals
such as changing the order in which the eigenvectors appear
within the rows of��, however. The update in (16) has ad-
ditional freedom in this regard.

5. MITIGATING NUMERICAL EFFECTS

As is well-known, discretization errors can cause the set of pa-
rameters within a tangent gradient algorithm to diverge away
from its respective manifold. This fact has led numerous re-
searchers to consider methods to approximate true geodesic
motion in such algorithms using Taylor series expansions,
correction terms, and the like in discretized coef cient up-
dates. Interestingly, the algorithms developed in this way
can look similar to our combined Grassmann-Stiefel update
in (16), in which the second Grassmann-like term is intro-
duced to reduce the error propagation of the parameter set
away from the manifold. Adding such terms increases the
complexity of an algorithm for the sake of numerical robust-
ness without giving any additional estimation capability in re-
turn.

The creation of a combined Grassmann-Stiefel update par-
titions the problem of numerical error propagation in a nice

way. Clearly, the error propagation of the algorithm away
from the manifold is determined, and therefore controlled, by
the Grassmann portion of the update. All of these numerical
issues can and should be solved by modi cation of this por-
tion of the algorithm, leaving the Stiefel part unmodi ed. The
combined Grassmann-Stiefel update gives us an additional
capability in return by allowing us to consider whatever goal
we wish to achieve in the subspace estimation portion of the
overall task. These ideas have been used in the two examples
in the previous section, whereby numerically-stable principal
and minor subspace tracking updates have been employed in
these algorithm portions [1, 3]. Thus, the additional com-
putations needed for numerical stability can be used to our
advantage.

6. CONCLUSIONS

In this paper, we have considered a uni ed Grassmann-Stiefel
update for adjusting an ����� orthonormalmatrix within the
Stiefel manifold to solve signal processing tasks. The new al-
gorithmic approach allows us to partition the overall task into
two parts: (1) �-dimensional subspace estimation within �-
dimensional Euclidean space, and (2) the estimation of the
coordinate system within the �-dimensional subspace. Dif-
ferent criteria can be used within each part, allowing for a rich
set of algorithms to be developed. Numerical error propaga-
tion away from the Stiefel manifold is encapsulated within
and can be controlled by the Grassmann portion of the up-
date. Algorithmshave been developed for principal and minor
eigenvector estimation tasks. The insights gained from this
study add to the ever-increasing body of literature devoted to
geometric optimization methods.
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