
GEOMETRY ANDMANIFOLDS FOR INDEPENDENT COMPONENT ANALYSIS

Mark D. Plumbley

Centre for Digital Music, Department of Electronic Engineering
Queen Mary University of London, Mile End Road, London E1 4NS, UK

mark.plumbley@elec.qmul.ac.uk

ABSTRACT
In the last few years, there has been a great interest in the use
of geometrical methods for independent component analysis
(ICA), both to gain insight into the optimization process and
to develop more ef cient optimization algorithms. Much of
this work involves concepts from differential geometry, such
as Lie groups, Stiefel manifolds, or tangent planes that may
be unfamiliar to signal processing researchers. The purpose
of this tutorial paper is to introduce some of these geometry
concepts to signal processing and ICA researchers, without
assuming any existing background in differential geometry.
The emphasis of the paper is on making the important con-
cepts in this eld accessible, rather than mathematical rigour.

Index Terms— Geometry, Optimization methods, Signal
analysis, Learning systems, Neural networks

1. INTRODUCTION

In independent component analysis (ICA), we are given a set
of observations assumed to be generated according to

x(t) = As(t) (1)

with real sources s = (s1, . . . , sn) and an n×nmixing matrix
A. The task is to obtain an estimate of the original sources,
assuming independence of the sources sj .
Many ICA algorithms operate in two stages. Firstly, the

data x is pre-whitened to give z = Qx where z has identity
covarianceΣz = E((z−z̄)(z−z̄)T) = I. We then search for
an orthonormal matrixW, i.e. withW satisfyingWT W =
WWT = In, such that the outputs y = Wz = WQAs are
as independent as possible.
This independence is typically measured by some cost or

likelihood function. For example, we could use the following
cost function based on negative log likelihood [1]

J(W) = −
(
E

[∑
i log pi(w

T
i z)

]
+ log |detW|

)
(2)

where we must nd the minimum of J under the constraint
thatW is orthonormal.

Partly supported by EPSRC Grants GR/S75802/01, GR/S85900/01 and
EP/C005554/1.

2. GRADIENT METHODS

Many algorithms are based on the method of steepest descent
(or steepest ascent if J is to be maximized). The idea is to
nd the direction of fastest change in J for a given amount
of change in W, and update W by a small amount in that
direction. Normally we calculate the gradient using ∇WJ ≡
∂J/∂W where [∂J/∂W]ij = ∂J/∂wij is the derivative of
the cost function. For example, for J in (2) we get the gradient

∇WJ = [WT]−1 − E[g(y)zT] (3)

where g(y) = [g(y1), . . . , g(yn)]T , g(y) = −(d/dy) log p(y).
We then updateW by

Wk+1 = Wk − η∇WJ (4)

for small η > 0, which we can also write asΔW = −η∇WJ .

2.1. Natural Gradient

In the classical Euclidean space that we are most familiar
with, a small (squared) distance from W to W + ΔW is
given by the squared length l2 = ‖W − (W + ΔW))‖2 =
‖ΔW‖2 =

∑
ij Δw2

ij . The natural gradient method, intro-
duced by Amari [2] uses a different measure of length more
suited to the multiplicative action of matrices: this is known
as a Riemannian metric G = [gij]. Using this new measure
of length, the steepest descend direction for our ICA problem
is given by the natural gradient

∇̃WJ = (∇WJ)WT W (5)

instead of the usual Euclidean gradient∇WJ . In a Euclidean
vector space however, the Riemannian metric is equal to the
identity (G = I), so the steepest descent direction is (minus)
the usual Euclidean gradient ∇WJ , and consequently we do
not consider this to be an issue. (We also notice in passing
that for orthonormal matrices, where WT W = I, from (5)
we have ∇̃WJ = ∇WJ .)
While the natural gradient has proved useful in many ICA

algorithms, it does not directly help us to impose our orthog-
onality constraint. Therefore let us review some approaches
that have been used to perform the constrained optimization
we are looking for.

IV ­ 13971­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

3. CONSTRAINED OPTIMIZATION APPROACHES

3.1. Penalty function method

WWT = I
���

��� ��� ��	

 ��� ���

Fig. 1. Penalty function ‘force’ towards constraint surface.

A simple method often used to attempt to enforce a con-
straint is to construct a penalty function P (W) which is zero
when the constraint holds, and positive elsewhere. The idea is
that this will tend to ‘force’ the optimization to nd the con-
straint surface (Fig. 1). The hope is that the minimum of the
combined target function Jμ = J + μP (W) will correspond
to the desired constrained minimum J at P (W) = 0. The
weight μ is often chosen heuristically.
For example, we might choose the penalty function

P (W) = ‖WWT − In‖
2
F

= trace((WT W − In)(WT W − In)) (6)

giving a new target function Jμ = J + μP (W) with gradient

∇Jμ = ∇J + μ∇P (W)

and hence a new update algorithm

ΔW = −η(∇WJ + μ∇WP (W)) (7)

= −η(I− E[g(y)yT] + 4μ(WWT − I))W (8)

However, the penalty function method is often not suf cient
to force the constraint to be satis ed. For example, if the fac-
tor μ is too weak, the update may simply diverge away from
the constraint surface. Furthermore, if the original cost func-
tion J does not itself have zero gradient at the desired con-
strained minimum, the penalty function method is not suf -
cient to give a constrained optimization. We would therefore
like a better method, to constrainW to remain orthogonal.

3.2. Repeated constraint application

An alternative approach is to re-impose the constraint after
each update step, making each update a 2-step process: (i)
perform an unconstrained steepest descent update; (ii) reim-
pose the constraint. For example, we can repeatedly apply
Gram-Schmidt Orthogonalization (GSO) after each update of
W, to ensure thatW is orthonormal after each update (Fig. 2).

However, as illustrated in the gure, we can spend a sig-
ni cant amount of effort moving away from the constraint
surface and back again, particularly as we get closer to the
desired solution. If possible, we would really like to remove
the tendency to move away from the constraint surface, so
that we stay on or close to it.

WWT = I�
�� �
���

���
�
�
�
��

� � ��

W′ ←W − η∇WJ W ← GSO(W′)

Fig. 2. Reimposition of constraint using GSO after each up-
date.

3.3. Tangent direction updates

To reduce the tendency to move away from the constraint sur-
face, we can make sure that the update ΔW does not have a
component pointing away from the surface. If we are on the
constraint surface, such that WT W = I, then we want any
in nitesimal change dW to satisfy

0 = d(WT W − I) = (dW)T W + WT (dW). (9)

The set ofΔW that satis es (ΔW)T W0 + WT
0 (ΔW) = 0

at a pointW0 is known as the tangent space TW0
atW0.

WWT = I

�
�
�
�
��

��
���

��
��
��
��
���Tangent TW0

atW0

−∇WJ
ΔW = ηPTW0

(−∇WJ)

W0

Fig. 3. Tanget update atW0.

So rather than reimposing the constraint after the update,
we form the update by projecting the gradient∇WJ in to the
tangent space (Fig. 3). For our ICA problem, this leads to the
update

ΔW = −
1

2
η((∇WJ)WT W −W(∇WJ)T W) (10)

= −
1

2
ηE[g(y)yT − (g(y)yT)T]W (11)

using the fact thatWT W = WWT = I.
While the tangent update method goes some way towards

a solution, it is only a rst order approximation, and we can
still nd a tendency to ‘drift’ away from the constrain surface.
It is possible to deal with this ‘drift’ problem, for exam-

ple through tangent updates followed by occasional reimpo-
sition of the constraints, or by introducing higher-order terms
to produce self-stabilizing algorithms [3]. However, there is
an alternative approach designed speci cally to maintain the
constraint at all times during the updates: these are the Lie
group methods.

IV ­ 1398

4. LIE GROUP METHODS

4.1. Lie groups

The idea behind Lie group methods is to nd a way to ‘move
about’ on the constraint surface without ever leaving it. To
get an idea of how we might do this, consider the set of unit-
length complex numbers (Fig. 4). If we multiply the unit

�

���
����

�

�
z

�θ

�

�

z = eiθ

w = eiφ

zw = ei(θ+φ)

�θφ�
 �

�

��
��
���

�
�
�
���

�
�
�
���

Fig. 4. Unit-length complex numbers.

length complex number w = eiφ by another z = eiθ we
get zw = ei(θ+φ), which is itself also a unit-length complex
number. Hence we have ‘moved’ from one unit length com-
plex number (w) to another (zw), through multiplying by z.
(Notice too that we can also view this as adding angles.)
In fact, the unit length complex numbers form a group.

As a reminder, a group G is a set of elements together with
a group operation which have the following properties: (i)
Closure (if z, w ∈ G, then zw = y ∈ G); (ii) Associativity
(z(wy) = (zw)y for z, w, y ∈ G); (iii) Identity element (I ∈
G, such that Iz = zI = z); and (iv) Inverse (for each z there
is some z−1 such that z−1z = zz−1 = I). Certain groups are
Abelian (commutative), such that zw = wz: this is the case
for the unit length complex numbers, but is not true in general
for matrices.
The unit length complex numbers also have the property

that the group is smooth, in the sense that we can make in-
nitesimally small movements on it. In fact, locally it looks
like a segment of real line R (if we atten it out a bit). A
group that is smooth, or differentiable, is called a Lie group.

4.2. Manifolds

At this point it is helpful to introduce the idea of a manifold.
A manifold is a set where we can put a local m-dimensional
coordinate system R

m on any small neighbourhood. We can
join these local coordinate systems together, with overlaps
as necessary, but without anything ‘nasty’ happening at the
joins. Since we can move about in R

m, using the usual vec-
tor addition operation, if we could work in these local coordi-
nates we could (in theory) move about locally on our manifold
without ever leaving it.
For a ‘real-world’ example, consider the surface of the

earth. Locally it looks like R
2. We can make a series of 2-

dimensional charts covering the earth, with each chart having
a corresponding map from a point on the chart to a point on

the manifold. The set of all these charts forms an atlas. The
charts should all overlap nicely, with no ‘holes’ left anywhere.
We can therefore trace any journey from any point on the earth
to any other by drawing a line across a sequence of charts.
Therefore the surface of the earth forms a 2-dimensional man-
ifold. We can also say that the manifold representing the earth
is embedded in R

3, since it naturally forms a subset of the 3-
dimensional Euclidean space R

3.
For the set of unit-length complex numbers (or circle),

they locally look like R
1. We can cover this circle with e.g.

two segments of R
1 with smooth overlaps. Alternatively, we

can simply use a single 1-dimensional line segment to cover
it, the angles 0 ≤ θ ≤ 2π + ε, with a smooth overlap around
the join where θ = 0 and θ = 2π meet.

4.3. Manifold of Orthonormal Matrices

Let us now return to our original problem of optimization
over the set of real orthonormal matrices. It turns out that
the equation WWT = I imposes n(n + 1)/2 constraints,
and the set of orthonormal matrices forms a manifold with
n(n− 1)/2 < n2 dimensions.
Furthermore, the set of orthonormal matrices also forms a

group, called the orthogonal group O(n). To check this, we
see that ifW and Z are orthogonal (W,Z ∈ O(n)), then for
V = WZ we getVT V = ZT WT WZ = ZT Z = I soV ∈
O(n); the identity matrix I ∈ O(n) is the group identity, and
so on. So we should be able to use the group operation (matrix
multiplication) to move about on the manifold, instead of our
classical addition operations.
One well-known way to perform some of these group op-

erations in ICA is to use Givens rotations [4]:(
ui1

(k+1)

ui2
(k+1)

)
=

(
cos θ sin θ
− sin θ cos θ

) (ui1
(k)

ui2
(k)

)
(12)

where (i1, i2) is an axis pair to rotate over. This is one type of
movement over SO(n), which roughly corresponds to moving
parallel to an axis when moving in R

n.
Now it turns out that the orthogonal group O(n) is actu-

ally composed of two disconnected subsets. For example, the
matrices in O(2) are one of two types:

(a) W =
(

cos θ sin θ
− sin θ cos θ

)
(b) W =

(
cos θ − sin θ
− sin θ − cos θ

)
.

Type (a) have determinant 1, while type (b) have determinant
-1. To get from an (a) to a (b) matrix we have to permute
the matrix: imaging picking up a pair of vectors on a plane
and ipping them over. The set of matrices of type (a) are
called the ‘special’ orthogonal matrices, SO(n), and form a
subgroup of O(n). The permutation ambiguity in ICA means
that any optimum of J must exist in both halves of O(n), so
we can restrict our search to the connected subgroup SO(n)
only, without missing any important solutions.
To move about in SO(2) we can simply add angles:

(
cos θ sin θ

− sin θ cos θ

) (
cos φ sin φ

− sin φ cos φ

)
=

(
cos(θ + φ) sin(θ + φ)
− sin(θ + φ) cos(θ + φ)

)

IV ­ 1399

For n = 2 this is an Abelian (commutative) group, and be-
haves like (is isomorphic to) unit-length complex numbers.

4.4. Differentiating on a Lie Group
�

���
��
����

�

�

dz/dt = iωz

z = eiωt

�

θ = ωt

�
��

Fig. 5. Derivative of unit length complex number.

A Lie groups has a local smooth coordinate system, so
we can differentiate functions on it. For unit-length com-
plex numbers, with z = exp(iωt), the derivative is given
by dz/dt = iω exp(iωt) = iωz, and the derivative is tan-
gent to the manifold surface at z (Fig. 5). In fact this pat-
tern “dW/dt ∝ W” also holds for SO(n). For example, for
W =

(
cos θ sin θ
− sin θ cos θ

)
∈ SO(2) where θ = tφ, differentiating

W wrt t, we get

d

dt
W =

(
− sin θ cos θ
− cos θ − sin θ

)
· φ =

(
0 φ
−φ 0

)
W

which we could verify is tangent to the constraint surface at
W. De ning the matrix exponential operator

exp(tB) = I + tB +
t2B2

2!
+ · · ·+

tkBk

k!
+ · · · , (13)

which satis es (d/dt) exp(tB) = B exp(tB), we see that

W =

(
cos θ sin θ
− sin θ cos θ

)
= exp Θ, Θ =

(
0 θ
−θ 0

)
.

Generalizing to SO(n), the tangent space TW atW is set of
matrices ΨW where ΨT = −Ψ is skew-symmetric.

4.5. Lie algebras

The skew-symmetric matricesBT = −B form what is called
a Lie algebra so(n), related to those in the Lie group SO(n)
through matrix exponentiation, B ∈ so(n) �→ exp(B) ∈
SO(n). The advantage of working in the Lie algebra so(n) is

��
��
������ !

!
!!

� �
�"

#

$

W

B = log W

W′ = expB′

B

B′
W′

SO(n)
so(n)

Fig. 6. Lie group update method

that it is a vector space, so we can add elements or multiply by
scalars, yet still stay in the Lie algebra [5]. So to move about
in SO(n), we use the matrix log to get to B = log W ∈
so(n), use addition to get to B′ ∈ so(n), then use the matrix
exponential to get toW′ = expB′ ∈ SO(n) (Fig. 6).

4.6. A geometric algorithm: geodesic ow

By de ning an inner product and norm (length) in so(n) such
as 〈B,H〉 =

∑
ij bijhij/2 with l2

B
= 〈B,B〉 we can work

out a steepest gradient descent direction. (A vector space with
this type of norm is called aHilbert space.) So for the gradient
in B-space we eventually get

∇BJ = (∇WJ)WT −W(∇WJ)T . (14)

By taking a small step in so(n) in this direction, we get the
geodesic ow method introduced to ICA by Nishimori [6]:

Wk+1 = exp(−ηG)Wk (15)

whereG = ∇BJ |B=0 = (∇WJ)WT −W(∇WJ)T . Since
G is skew-symmetric, ifWk is orthonormal, thenWk+1 will
also be orthonormal. This is a constrained steepest descent
search towards our required constrained optimization.

5. CONCLUSIONS

In this brief tutorial, we have seen that methods based on ideas
from differential geometry can give us a way to tackle the
type of constrained optimization found in ICA. In addition to
the special orthogonal matrices SO(n) considered here, other
manifolds of interest include the Stiefel manifold (the set of
n×p full rank rectangular matrices), and the Grassmann man-
ifold (the set of p-dimensional subspaces in R

n), and Newton
and conjugate gradients methods can also be used. For some
further reading on constrained optimization using these Rie-
mannian manifolds, see e.g. [7, 8].
While there are some remaining issues with these meth-

ods, including the cost of calculating (or approximating) the
matrix exponential, they represent an interesting and promis-
ing approach to optimization for ICA and related tasks.

6. REFERENCES

[1] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component
Analysis, John Wiley & Sons, 2001.

[2] S. Amari, “Natural gradient works ef ciently in learning,” Neu-
ral Comput., vol. 10, pp. 251–276, 1998.

[3] S. C. Douglas, “Self-stabilized gradient algorithms for blind
source separation with orthogonality constraints,” IEEE Trans.
Neural Networks, vol. 11, pp. 1490–1497, 2000.

[4] P. Comon, “Independent component analysis - a new concept?,”
Signal Proc., vol. 36, pp. 287–314, 1994.

[5] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna,
“Lie-group methods,” Acta Num., vol. 9, pp. 215–365, 2000.

[6] Y. Nishimori, “Learning algorithm for ICA by geodesic ows
on orthogonal group,” in Proc. IJCNN’99, pp. 933–938, 1999.

[7] S. T. Smith, “Optimization techniques on Riemannian mani-
folds,” Fields Inst. Com., vol. 3, pp. 113–136, 1994.

[8] D. Gabay, “Minimizing a differentiable function over a differ-
ential manifold,” J. Optim. Theory Appl., vol. 37, pp. 177–219,
1982.

IV ­ 1400

