
REAL-TIME DISTRIBUTED TRACKING

Wayne Wolf1, Senem Velipasalar2, Jason Schlessman1, Cheng-Yao Chen1, Chang-Hong Lin1

1Department of Electrical Engineering
Princeton University

2Department of Electrical Engineering
University of Nebraska—Lincoln

Abstract

Distributed smart cameras use distributed computing archi-
tectures to analyze imagery from physically distributed
cameras. Performing real-time distributed analysis of video
introduces substantial new challenges, but also provides
substantial benefits over server-based approaches. This
work describes some of the algorithms and architectures we
have developed for tracking using distributed smart camera
systems, including fault-tolerance, synchronization, and
multi-band fusion.

index terms: distributed computing, tracking

1 Introduction
Computer vision uses the term distributed camera to
describe a set of physically distributed cameras. Occlusion
is a key problem in tracking. Multiple camera systems were
introduced to reduce occlusion problems. We can distin-
guish between static occlusion caused by a fixed object and
dynamic occlusion caused by several moving objects.
Static occlusion can be tackled by some amount of pre-pro-
cessing, but dynamic occlusion requires low-latency analy-
sis.

The term distributed camera says nothing about the com-
puter architecture used to process the imagery, but most
research in distributed cameras has relied on a central
server. But server-based video analysis does not scale to the
large number of cameras and large volumes of data required
in realistic installations; servers also do not scale well under
real-time requirements [Wol07]. Realistic multi-camera
installations may require hundreds of cameras; these large
camera installations cannot be analyzed by a centralized
server.

Bove’s group at the MIT Media Lab [Bov03] conducted
early research on distributed computing architectures for
multiple cameras. More recent work on distributed smart
cameras includes Rinner’s group at TU Graz [Bra06],
Radke’s group at RPI [Dev06], and Aghajan’s group at
Stanford [Lee06]. Our own work in smart cameras [Oze02]

that perform video analysis in real time led us to develop
distributed smart camera systems.

Our first distributed smart camera [Lin04] performed ges-
ture recognition using a peer-to-peer architecture. Each
smart camera performs some processing locally. Smart
cameras then send or receiver an abstract intermediate rep-
resentation of the subject. Those intermediate representa-
tions are combined to recognize the gestures. As the subject
moves about the scene, smart cameras always perform their
local processing, but the node that performs the final ges-
ture recognition may move about the network, as repre-
sented by a token.

Energy and power consumption are critical metrics for dis-
tributed smart camera systems. Even if smart camera nodes
will not be powered by batteries, power consumption deter-
mines heat dissipation as well as system cost.

Using distributed algorithms causes us to both be concerned
with and find opportunities for fault-tolerant computing. By

server

target
model

target
model

target
model

node 1 node 2

FIGURE 1. A server-based distributed camera
algorithm can be transformed into a distributed

system.

IV 13891424407281/07/$20.00 ©2007 IEEE ICASSP 2007

distributing information about tracking operations across
the network, we can improve the system’s resistance to fail-
ures, whether inadvertent or malicious.

This paper summarizes our approach to tracking using peer-
to-peer distributed smart cameras. We developed SCCS, the
Scalable Clustered Camera System, to demonstrate our
ideas on distributed smart cameras for tracking [Vel06A].
SCCS allows us to demonstrate an interdisciplinary
approach to multi-camera systems.

This paper will describe our approach to tracking in several
steps. Because protocols are central to distributed systems,
we will start by describing our protocol for tracking. Next,
we will describe the middleware that dynamically controls
the operation of the distributed system. We will then con-
sider image processing challenges in real-time distributed
tracking.

2 Protocols for Real-Time Tracking
Distributed algorithms are controlled by protocols that gov-
ern the communication between the computing nodes. As
illustrated in Figure 1, we need to break our vision algo-
rithm into steps that can be performed on distributed pro-
cessors. This process requires inserting protocols between
steps and allocating data to the nodes. When distributing a
vision algorithm, data allocation and their associated com-
putations are particularly important because of the large
volumes of data used in the early stages of analysis.

A particular goal for SCCS was to make the system more
fault-tolerant. As illustrated in Figure 1, we replicated data
about targets around the network—each node keeps track of
all of the targets in its field of view, even if the target is
occluded at any particular time. If each target were tracked
by a single node, a node failure would cause the system to
lose all information about that node’s targets. Failures at

FIGURE 2. Camera 1 tracks an occluded object by communicating with other cameras.

IV 1390

single nodes do not necessarily cause us to lose all informa-
tion about its targets.

The intersections between the fields-of-view of the cameras
are determined before normal operations begin. These
intersecting fields-of-view determine the possible required
interactions between smart camera nodes, since two cam-
eras that have non-overlapping fields of view cannot track
the same subject at the same time. But the actual interac-
tions are determined at run time based upon the positions of
the targets.

For each target, a smart camera node communicates with all
other nodes whose fields-of-view include that target. The
nodes trade information on the position of the target every n
frames, where n is determined by the protocol designer or
user. If the target is occluded at one camera, it receives an
update on the target’s position during this trading step.

Figure 2 shows several frames from SCCS tracking a car in
a scene with a static occlusion opportunity. The top part of
the figure shows the view of the scene from each of the
three cameras; the lower frames are all from camera 1. As
the target moves behind the box and becomes occluded,
camera 1 continues to know the target’s location thanks to
its communication with the other camera nodes.

3 Software Architectures for Distributed
Smart Cameras
Distributed computing protocols may be implemented ad
hoc using specialized code but most modern distributed
systems make use of middleware to implement basic dis-
tributed computing functions. Middleware is used because
many resource allocation decision cannot be made stati-
cally. Middleware dynamically manages requests based
upon activity and resource management policies.

Tracking systems present rapidly changing situations and
resource management decisions. As targets move about the
scene, they move in and out of fields-of-view of the cam-
eras. Each change in the visibility state of the target must
cause the network to change its patterns of computation and
communication. The smart cameras that need to communi-
cate may not be nearby either spatially (they may be across
the scene from each other) or in network distance.

Our SCCS protocol made use of MPI (http://www-
unix.mcs.anl.gov/mpi/), a widely-used middleware system
for scientific computation. MPI provided basic facilities for
sharing data across nodes in the network; the specific proto-
col was implemented in a layer that made use of MPI prim-
itives. MPI was not designed for real-time, embedded
applications. However, our experience with MPI has helped
us better understand the requriements on real-time middle-
ware in general and vision-oriented middleware in particu-

lar. We are developing a new, more specialized middleware
architecture.

Many research groups have studied spatial calibration of
distributed cameras, but only a few groups have studied
synchronization or temporal calibration. The oscillators
used to generate frames in camers are not accurate enough
to remain synchronized for any useful period. Analog syn-
chronization methods, such as genlock, are very poorly
suited to large, real-world installation. We studied tradi-
tional distributed algorithms for timekeeping [Lin05]. We
also developed an image-processing-based algorithm to
synchronize cameras [Vel05]. Practical systems will proba-
bly make use of both types of algorithms.

Sensor network research has tackled many issues of interest
to distributed smart cameras: synchronization, network
membership, routing, etc. SCCS is not built upon a sensor
network middleware system, but such systems could pro-
vide a range of useful services. Because vision systems can
transmit large volumes of data, some specialized services
may be required.

4 Distributed Image Processing
Distributed smart cameras present several interesting image
processing challenges. Perhaps the most basic issue is the
hierarchy of representations used to describe the image.
Many image processing algorithms use intermediate repre-
sentation, but because they are used only internally, the
characteristics of those representations often receive only
minimal attention. However, intermediate representations
in distributed systems have profound consequences on per-
formance, real-time behavior, and energy/power consump-
tion.

SCCS uses a two-part target model: a color histogram and
Bhattacharya distance. This model is small enough to fit
into a single 256-byte packet. Other groups have developed
sophisticated multi-view target models to handle, which
could be incorporated here. An interesting topic for future
research is to study how partially-processed imagery could
be used as a distributed target model.

We use the target model as our intermediate representation.
This very abstract representation is reasonable given our
simple model for data replication. However, a more pixel-
oriented model could be useful for some types of vision
algorithms.

Tracking can also benefit from information from several
bands. Figure 3 shows some results of our target model that
combines information from the thermal and visible bands
[Che06]. This background elimination algorithm combines
information from the two bands to create an improved esti-
mate of the foreground. It uses a particle filter with a mix-

IV 1391

ture-of-Gaussians distribution for each foreground object.
The V channel is generated by first adjusting for lighting,
then fusing visible and thermal channel information with
confidence weightings. Multi-band image analysis helps us
estimate lighting sources and eliminate shadows; it also
helps us handle target fusing and separation during dynamic
occlusion.

5 Summary
Realistic multi-camera tracking systems are embedded
computing systems that must operate in real time, at low
power levels, and within cost constraints. These constraints
inevitably lead us toward distributed computing architec-
tures. We cannot completely divorce the consideration of
image processing algorithms from the hardware and soft-
awre architetures of the distributed platform used for track-
ing. We must use algorithms that provide compact yet
powerful abstract representations of the images and that can
be processed with low latencies. However, by viewing the
algorithm design process as the insertion of protocols into a
server-based algorithm, we can make the process more
manageable. We believe that this approach is widely appli-
cable and that distributed smart camera systems will be
developed for many applications.

Acknowledgments
This work was sponsored by the National Science Founda-
tion under award 0325119 and by the Army Research
Office under contract W911NF-05-12-0480.

References
[Bov03] V. Michael Bove, “Media processing ecologies,”
in Proceedings, ITRE 2003.

[Bra06] Michael Bramberger, Andreas Doblander, Arnold
Maier, Bernhard Rinner, Helmut Schwabach. Distributed
Embedded Smart Cameras for Surveillance Applications.
IEEE Computer 39(2) pages 68-75, February 2006.

[Dev06] Dhanya Devarajan, Richard J. Radke, and
Haeyong Chung, Distributed Metric Calibration of Ad-Hoc
Camera Networks. ACM Transactions on Sensor Networks,
Vol. 2, No. 3, pp. 380-403, August 2006.

[Che06] C. -Y. Chen, and W. Wolf, “Background Modeling
and Object Tracking Using Multi-Spectral Sensors,” ACM
Workshop on Video Surveillance and Sensor Networks,
2006.

[Lee06] H. Lee and H. Aghajan, “Vision-Enabled Node
Localization in Wireless Sensor Networks,” COGnitive sys-
tems with Interactive Sensors (COGIS), March 2006.
[Lin04] Chang Hong Lin, Tiehan Lv, Wayne Wolf, and I.
Burak Ozer, “A peer-to-peer architecture for distributed
real-time gesture recognition,” in Proceedings, Interna-
tional Conference on Multimedia and Exhibition, IEEE,
2004, vol. 1, pp. 27-30.

[Lin05] C. H. Lin and W. Wolf, “A Case Study in Clock
Synchronization for Distributed Camera Systems”, Pro-
ceedings of SPIE, Vol. 5683, January 2005.
[Oze02] Wayne Wolf, Burak Ozer, and Tiehan Lv, “Smart
cameras as embedded systems,” IEEE Computer, 35(9),
September 2002, pp. 48-53.
[Vel05] Senem Velipasalar, Wayne Wolf, "Frame-Level
Temporal Calibration of Video Sequences from Unsynchro-
nized Cameras by Using Projective Invariants", IEEE Inter-
national Conference on Advanced Video and Signal Based
Surveillance, Como, Italy, September 15-16, 2005.

[Vel06A] Senem Velipasalar, Jason Schlessman, Cheng-
Yao Chen, Wayne Wolf, and Jaswinder Pal Singh, “SCCS: a
scalable clustered camera system for multiple object track-
ing communicating via message passing interface,” in Pro-
ceedings, ICME 2006, IEEE, 2006.

[Vel06B] Senem Velipasalar, Changhong Lin, Jason
Schlessman, and Wayne Wolf, “Design and verification of
communication protocols for peer-to-peer multimedia sys-
tems,” in Proceedings, ICME 2006, IEEE, 2006.

[Wol07] Wayne Wolf, High Performance Embedded Com-
puting, Elsevier, 2007.

FIGURE 3. Multi-spectral foreground fusion.

visible thermal

fused foregrounds

IV 1392

