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ABSTRACT

A layered and collaborative architecture for gesture recogni-

tion in a multi-camera network is presented in this paper. The

proposed approach is motivated by the diversity of gestures

expressed in passive monitoring applications. It is based on

the concept of opportunistic fusion of simple features within a

single camera and active collaboration between multiple cam-

eras in the decision making process. The decision process is

pursued through mutual, assisted, and self correspondences,

using features available at different cameras. The dynam-

ics employed by the opportunistic fusion of different features

within a single camera as well as those from multiple cameras

offer the potential to address gesture recognition problems

more efficiently and accurately across a variety of different

applications.

Index Terms— Gesture analysis, Collaborative process-

ing, Opportunistic data fusion, Camera networks

1. INTRODUCTION

The increasing interest in understanding human behaviors and

events in a camera context has heightened the need for ges-

ture analysis of image sequences. Gesture recognition prob-

lems have been extensively studied in Human Computer In-

teractions (HCI), where gestures are well-defined for deliver-

ing instructions to machines [1, 2]. However, “passive ges-

tures” predominate in behavior descriptions of many applica-

tions. Some examples include surveillance and security ap-

plications, emergency detection in clinical environments, and

video conferencing [3, 4]. Some approaches to analyzing pas-

sive gestures have been investigated in [5, 6].

Access to multiple sources of visual data often allows

for making more comprehensive interpretation of events and

gestures. Scalable implementation of multi-camera networks

can be realized under a change of paradigm from central-

ized processing of raw data to distributed and collaborative

implementation of vision-based reasoning algorithms at the

network nodes. Besides access to different perspectives that

can help determine a gesture, such approach to algorithm de-

sign also enables content-based employment of a variety of

low-complexity algorithms instead of using computationally

expensive techniques that need to universally run on various

kinds of visual content. This paper sets forth a framework for

analyzing human gesture based on opportunistic use of fea-

tures available to the nodes of the network, and a layered and

collaborative data analysis mechanism that systematically ex-

ploits the available information to achieve a description of the

gesture.

An appropriate classification is essential towards a better

understanding of the variety of passive gestures. Therefore,

we propose a categorization of the gestures as follows:

• Static gestures, such as standing, sitting, lying;

• Dynamic gestures, such as waving arms, jumping;

• Interactions with other people, such as chatting;

• Interactions with the environment, such as dropping or

picking up objects.

The proposed architecture for gesture recognition aims to

accommodate the diversity of gestures and achieve efficient

recognition in a multi-camera network. The layered structure

consists of description layers and decision layers, which can

be adapted to different subsets of gestures. This introduces

flexibility for a variety of gesture applications. The collabo-

rative decision process employs the concept of opportunistic

data fusion of simple features within a single camera and ac-

tive collaboration between multiple cameras in the decision

making process. By employing different levels of collab-

oration, the proposed opportunistic feature fusion approach

offers the potential to address gesture recognition problems

more efficiently and accurately.

2. LAYERED AND COLLABORATIVE
ARCHITECTURE

The overall architecture for the proposed gesture analysis ap-

proach is illustrated in Fig. 1. It consists of four descrip-

tion layers and three decision layers. From bottom to top,

the four description layers are, layer 1 of images, layer 2 of

features, layer 3 of gesture elements, and layer 4 of gestures.

The three decision layers are the decision processes between

neighboring description layers. With the layers going up, the

abstraction of information contained in each description layer

increases.
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Fig. 1. The layered and collaborative architecture of the ges-

ture recognition system. Ii stands for images taken from cam-

era i; Fi is the feature set for Ii; Ei is the gesture element set

in camera i; and G is the set of possible gestures.

In description layer 1, Ii is the image sequence of camera

i. The images are processed and a feature set Fi in description

layer 2 is obtained from Ii. Each Fi is a vector of several fea-

tures (fi1, fi2, · · · ). In description layer 3, gesture elements

are selected for gesture models in description layer 4. They

act as the bridge between low-level image features and high-

level gesture descriptions. For each passive gesture category

stated in Section 1, different gesture elements are of interest.

Depending on the scope or diversity of the application, dif-

ferent subsets of a universal library of low-level features and

gesture elements may be considered. Hence, the architecture

has the flexibility to be applied to a variety of gestures.

The distinction between decision layer 1 and decision lay-

ers 2 and 3 is due to different characteristics of the data they

process. Decision layer 1 takes in images from a camera, and

outputs features based on these images. While in decision lay-

ers 2 and 3, the decision process takes in low-level elements

from multiple cameras and outputs high-level elements. El-

ements in description layer 1 have a large volume since they

are images. While in description layers 2 and above, elements

have been reduced to abstract descriptions, which can be ef-

ficiently shared among neighboring cameras without impos-

ing a heavy communication burden on the channel. Hence,

in the proposed architecture, collaboration is provisioned in

decision layers 2 and 3, and not in decision layer 1.

3. OPPORTUNISTIC APPROACH IN DECISION
PROCESS

The underlying concept set forth through the decision mak-

ing process is one of opportunistic fusion consisting of two

aspects. First, within a single camera a number of simple fea-

tures are adaptively aggregated, with processes that occur in

decision layer 1. Second, between multi-view cameras, col-

laboration is actively pursued in different levels to employ the

Fig. 2. Relationship of opportunistic data fusion, decision

layers, and different kinds of correspondences through which

decisions are made.

Fig. 3. Opportunistic fusion of features. Estimates of color-

based segmentation and motion flow can be used to refine one

another.

available pieces of information to reduce decision uncertainty.

Collaboration occurs in decision layers 2 and 3.

In terms of implementation, collaboration is achieved pri-

marily through analysis of correspondence. We categorize de-

cision processes into three kinds of correspondences, mutual

correspondence, assisted correspondence, and self correspon-

dence. Mutual and assisted correspondences involve collabo-

ration among cameras, while self correspondence is the deci-

sion process within a single camera. Fig. 2 outlines the rela-

tionship of the two aspects of opportunistic fusion, the three

kinds of correspondences in decision making, and the three

decision layers.

3.1. Fusion of Features in A Single Camera

To illustrate the concept of opportunistic fusion of features,

we choose the estimation of color segmentation and motion

flows as two features in the feature vector Fi obtained in de-

cision layer 1 for camera i. A first-step estimation is made

for each feature. However, this estimation is coarse since we

confine our algorithm with low complexity due to two con-

siderations. One is that a complex algorithm may be costly in

terms of image processing computation and time efficiency.

And that in many applications it is difficult to obtain sufficient

descriptions from images based only on one feature, even by

employing complex algorithms. On the other hand, different

features often complement each other. For example, it is pos-

sible to use results from color segmentation to refine those of

motion flows, and vice versa. The algorithmic flow presenting

this notion is shown in Fig. 3.

Two examples for opportunistic fusion of features in a sin-

gle camera are given in Figs. 4 and 5. In Fig. 4(a), a prelimi-

IV  1378



Fig. 4. Motion estimation assists segmentation. (a) is the re-

sult of segmentation based on color information; in (b), mo-

tion is used to find missing parts in (a).

Fig. 5. Segmentation assists motion estimation. (a) shows

ellipses fitted to the arm using segmentation results. (b) shows

motion estimation without segmentation information. (c) uses

angles of ellipses as parameters for motion estimation, and

shows much improved performance.

nary color segmentation is obtained, in which a part of the leg

is missing due to having a similar color to the background. In

Fig. 4(b), motion flows have been used to segment the missing

parts, since some of those parts have strong motions and are

thus identifiable through optical flow estimation. In Fig. 5(a),

a person is raising his arm. The ellipses fit to the arm from

segmentation results are overlaid on the images. We are using

a fast two-frame feature based motion estimation algorithm,

which we have developed for translational motions. So in

Fig. 5(b), the motion of the arm cannot be correctly detected

without using the rotation information. In Fig. 5(c), the orien-

tation angles of the ellipses are used as refinement parameters

to obtain correct optical flow results for the arm.

3.2. Collaboration among Multiple Cameras

Collaboration among multiple cameras offers three major ad-

vantages in analyzing gestures. First, employment of multi-

view cameras can help circumvent occlusions and provide an

opportunity to identify the best view, especially when the hu-

man body itself is self-occlusive. Second, even without oc-

clusions, gesture elements obtained from a single camera may

be ambiguous for decision making, whereas a combination of

gesture elements from multiple views may convey a higher-

confidence interpretation of the gesture. Finally, since the im-

age of a certain camera is a projection of the real gesture onto

the image plane, gesture elements from different perspectives

are correlated with each other. This correlation itself may im-

pose helpful constraints on the gesture recognition process.

An illustration of how collaboration is implemented through

Fig. 6. Illustration for mutual, assisted, and self correspon-

dences. (a) e1 is decided through features from three cam-

eras; (b) e2, e3 are obtained from f12, f22 of cameras 1 and 2,

respectively. But f12, f22 are correlated; (c) e2 is refined to

e4 according to constraints of the correlation; (d) Other cor-

respondence are made.

mutual and assisted correspondence is shown in Fig. 6. This

example is for decision layer 2, between the features layer

and the gesture elements layer. A similar process holds true

for decision layer 3 [7].

• Mutual Correspondence. Mutual correspondence refers

to the presence of features from multiple cameras that

reach to a common gesture element, as shown in Fig. 6(a).

This happens when some gesture elements are more

likely to appear simultaneously in multiple views, and

their features have great similarities.
• Assisted Correspondence. In Fig. 6(b), an intermediate

decision is made to (f12, e2) with a low confidence, and

(f22, e3) with a high confidence. However, the correla-

tion between f22 and f12 may have such an effect that

if (f22, e3) has a high confidence, then f12 is highly

probable to link to e4.
• Self Correspondence. For some features in description

layer 2, collaboration is not applied either because de-

cisions for them can be obtained within a single camera

with high confidence, or that the features are solely in

the scope of a single camera.

Examples from a universal motion estimation application

are shown in Figs. 7, 8, and 9. Collaboration among multi-

ple cameras is actively pursued in order to identify the mo-

tion type. The human body model that the cameras are ob-

serving keeps certain consistent attributes between different

views, therefore simple features can be used to reveal these

consistencies. Collaboration is implemented by mutual and

assisted correspondences. First, by mutual correspondence,

strong directional trends from the majority of cameras are

recognized, which helps to decide whether the motion is hor-

izontal or vertical. Mutual correspondence is also applied to

determine whether the vertical motion is sitting down or bend-

ing down. For sitting down, motion vectors of the upper body
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Fig. 7. Horizontal motion estimation. (a)(b)(c) are images

from three cameras at the same time instance. Motion flows

from a 2-frame optical flow scheme are also shown on top of

the images. Horizontal motion is identified to be dominant,

and directions are given as (a) forward (b) right (c) left.

Fig. 8. Activity recognition: bending down for pick-up.

(a)(b)(c) are images from three cameras at the same time in-

stance. Vertical motion is identified as dominant. In (d)(e)(f)

motion vectors are projected on the vertical axis. The high

peaks and asymmetry are activity indicators.

are more uniform. So in Fig. 9 (d) (e) (f), projections of vec-

tors do not have high peaks. Whereas in Fig. 8 (d) (e) (f) for

the case of bending down, the projections present dominant

local peaks and are highly asymmetric. Second, by assisted

correspondence, directions of the motion are identified. Each

camera will first make a preliminary estimation of the direc-

tion, and then magnitude constraints imposed by observations

of all cameras are used to refine the estimates.

4. CONCLUSION

Our interest in passive gestures and a categorization of gesture

types are presented. Considering both the flexibility to recog-

nize a variety of gesture types and the distributed nature of

multi-camera networks, a layered and collaborative architec-

ture is proposed. The underlying concept of this architecture

is an opportunistic fusion of data and decisions. This means

that within a single camera, a number of simple features are

aggregated based on the model, whereas between the cam-

eras, collaboration is pursued in different levels to employ the

available pieces of information in order to achieve better re-

sults. Specifically, collaboration is achieved by mutual and

assisted correspondences.

The intention of our effort is to define a general approach

that can be applied to recognition of the variety of natural ges-

Fig. 9. Activity recognition: sitting down. (a)(b)(c) are im-

ages from three cameras at the same time instance. Vertical

motion is detected. In (d)(e)(f) motion vectors are projected

on the vertical axis. They have different characteristics from

those of Fig. 8.

tures. In different applications, the interesting gestures and

the set of gesture elements may vary. However, this architec-

ture and the opportunistic approach to fuse information pro-

vide sufficient flexibility so that they can generalize.
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