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ABSTRACT

Technological advances in radio-frequency (RF) front-ends, such as
recon gurable antenna arrays, afford a new “hardware” dimension
for dynamic spectrum access in cognitive wireless networks. In
this paper, we study the impact of recon gurable antenna arrays on
maximizing the spectral ef ciency of multiple input multiple out-
put (MIMO) wireless communication links. Physical wireless chan-
nels exhibit spatial correlation and there is growing experimental ev-
idence that sparse multipath is a key source of such correlation. We
propose a model for sparse multipath channels and show that spar-
sity affords a new dimension over which MIMO capacity can be op-
timized: the distribution or con guration of the sparse statistically
independent degrees of freedom (DoF) in the available spatial signal
space dimensions. We provide an explicit characterization of the op-
timal capacity-maximizing channel con gurations as a function of
the operating SNR. We then develop a framework for realizing the
optimal channel con guration at any SNR by systematically adapt-
ing the antenna spacings at the transmitter and the receiver. In con-
trast to a xed-array MIMO system in which the multiplexing gain
is lost at low SNRs, such adaptively recon gurable MIMO systems
deliver the maximum multiplexing gain at all SNRs. Surprisingly,
three canonical array con gurations are suf cient for near-optimum
performance over the entire SNR range. Numerical results based on
a realistic physical model are presented and implications of this work
for cognitive radio and dynamic spectrum access are discussed.

Index Terms— Recon gurable MIMO systems, sparse multi-
path, capacity, spectral ef ciency

1. INTRODUCTION

With the inevitable trend towards proliferation of wireless devices,
there is a growing need for developing new theory and methods for
harnessing the potential of emerging wireless technology for spec-
tral ef ciency and interference management. Several recent lines
of research address this multi-faceted challenge from different di-
mensions, including software-de ned radio and cognitive wireless
systems, waveform diversity techniques, and cross-layer techniques
for dynamic spectrum management. However, most of these ap-
proaches implicitly assume communication devices with xed radio-
frequency (RF) front-ends and focus on system optimization at a
“software” or algorithmic level.

Advances in recon gurable RF front-ends, particularly recon-
gurable antenna arrays, afford a new “hardware” dimension for
optimizing the performance of wireless communication systems by
adapting the array con guration to changes in the communication
environment. However, theory and methods for maximal utilization
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of such new wireless devices are still in their infancy. While the in-
tense research on multiple input multiple output (MIMO) wireless
communication systems was pioneered by initial results in rich mul-
tipath environments, there is growing evidence that physical wireless
channels exhibit a sparse structure even at relatively small antenna
dimensions. Recent studies also indicate that reducing the antenna
spacings in such correlated environments can actually increase ca-
pacity in the low-SNR regime. Thus, understanding the impact of
recon gurable antenna arrays on MIMO capacity, and developing
strategies for sensing and adapting to the environment, is of signi -
cant theoretical and practical interest.
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Fig. 1. (a) A sparse 9×9 virtual channel matrix. (b) Capacity versus
SNR for different channel con gurations for D = N = 25. (c)-(e):
Virtual beam patterns for N = 25 and different spacings; (c) large
spacing; (d) medium spacing; (e) small spacing.

In this paper, we propose a framework for maximizing the ca-
pacity of MIMO wireless links in sparse multipath by systematically
adapting the array con gurations at the transmitter and the receiver.
We focus on uniform linear arrays (ULAs) of antennas and propose
a model for sparse multipath channels using the virtual channel rep-
resentation [1] that provides an accurate and analytically tractable
model for physical multipath channels. Let Hv denote an N × N
virtual channel matrix representingN antennas at the transmitter and
the receiver. The dominant non-vanishing entries of Hv reveal the
statistically independent degrees of freedom (DoF), D, in the chan-
nel which also represent the number of resolvable paths in the scat-
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tering environment. In sparse channels, D < N2, as illustrated
in Fig. 1(a), and thus sparse channels afford a new dimension over
which capacity can be optimized: the distribution (or con guration)
of theD DoF in the available N2 dimensions inHv . For a given N
and D, we introduce a family of channel con gurations described
by two parameters (p, q) that are constrained as D = pq; p rep-
resents the multiplexing gain (the number of parallel channels) and
q = D/p re ects the DoF per parallel channel. The capacity of all
con gurations is accurately approximated by

C(N, ρ, D, p) ≈ p log(1 + ρD/p2) (1)

where ρ denotes the transmit SNR and ρD/p2 = ρq/p = ρrx de-
notes the received SNR per parallel channel. The above formula
reveals a fundamental new tradeoff in sparse channels between the
multiplexing gain (MG) and ρrx that governs channel capacity: in-
creasing p comes at the cost of ρrx and vice versa. This is illustrated
in Fig. 1(b) where the capacity curves represent different values of
p. For any ρ, there is an optimal channel con guration (value of p)
that optimizes the MG-ρrx tradeoff and yields the highest capacity.

The optimal channel con guration at any SNR can be realized
in practice by systematically adapting the antenna spacings at the
transmitter (Tx) and receiver (Rx). Surprisingly, three canonical
array con gurations are suf cient for near-optimum performance
over the entire SNR range. The multiplexing (MUX) con guration
(p = pmax = N ) in Fig. 1(b) is optimal at high SNR, ρ > ρhigh,
and is realized by large spacings at both ends, illustrated in Fig. 1(c).
The beamforming (BF) con guration (p = pmin = 1) is optimal
at low SNR, ρ < ρlow, and is realized by closely spaced anten-
nas at the Tx (Fig. 1(e)) and large spacing at the Rx (Fig. 1(c)).
The IDEAL con guration (p = pid =

√
N ) is a robust choice for

ρ ∈ (ρlow, ρhigh) and is realized by medium spacings at the Tx and
the Rx (Fig. 1(d)). Thus, maximum multiplexing gain is achieved
over the entire SNR range via the three canonical con gurations.
We illustrate our results with numerical simulations based on an ac-
curate physical model, and provide a discussion of the potential of
recon gurable MIMO transceivers in cognitive radio and dynamic
spectrum access.

2. PHYSICAL AND VIRTUAL MODELING OF
MULTIPATH CHANNELS

We consider a single-user MIMO system with ULA’s of N transmit
and N receive antennas. The transmitted signal s and the received
signal x are related by x = Hs + n whereH is the N ×N MIMO
channel matrix and n is the AWGN at the receiver. A physical mul-
tipath channel can be accurately modeled as

H = N
LX

�=1

β� ar(θr,�)a
H
t (θt,�) (2)

where the transmitter and receiver arrays are coupled through L
propagation paths with complex path gains {β�}, Angles of De-
parture (AoD) {θt,�} and Angles of Arrival (AoA) {θr,�}. In (2),
ar(θr) and at(θt) denote the receiver response and transmitter steer-
ing vectors for receiving/transmitting in the normalized direction
θr/θt, where θ is related to the physical angle (in the plane of the
arrays) φ ∈ [−π/2, π/2] as θ = d sin(φ)/λ, d is the antenna spac-
ing and λ is the wavelength of propagation. Both ar(θr) and at(θt)
are periodic in θ with period 1 [1], and are also unit-norm and the
factor N in (2) re ects this normalization.

The virtual MIMO channel representation [1] characterizes a
physical channel via coupling between spatial beams in xed virtual

transmit and receive directions

H =

NrX
m=1

NtX
n=1

Hv(m, n)ar(θ̃r,m)aH
t (θ̃t,n) = ArHvA

H
t (3)

where
n

θ̃r,m = m
Nr

o
and

n
θ̃t,n = n

Nt

o
are xed virtual receive

and transmit angles that uniformly sample the unit square in the
beamspace, (θr, θt) ∈ [−1/2, 1/2] × [−1/2, 1/2], and result in
unitary (DFT) matrices At and Ar . Thus, H and Hv are unitarily
equivalent: Hv = AH

r HAt. The virtual representation is linear and
is characterized by the matrixHv .

A key property of the virtual representation is that it induces
a partitioning of paths in (2) [1]: distinct Hv(m, n)’s are asso-
ciated with approximately disjoint sets of paths whose AoA’s and
AoD’s lie within the intersection of the n-th transmit and m-th re-
ceive beam. It follows that {Hv(m, n)} are approximately indepen-
dent due to the independence of path gains.1 We will assume that
the virtual coef cients are exactly independent zero-mean Gaussian
random variables (Rayleigh fading). Thus, the statistics of H are
characterized by the virtual channel power matrix Ψ: Ψ(m, n) =
E[|Hv(m, n)|2]. The matrices Ar and At constitute the matrices
of eigenvectors for the transmit and receive covariance matrices, re-
spectively: E[HHH] = AtΛtA

H
t and E[HHH ] = ArΛrA

H
r ,

where Λt = E[HH
v Hv] and Λr = E[HvH

H
v ] are the diagonal

matrices of transmit and receive eigenvalues. Ψ re ects the joint
distribution of channel power as a function of transmit and receive
virtual angles. Λt and Λr serve as the corresponding marginal dis-
tributions: Λr(m) =

P
n Ψ(m, n) and Λt(n) =

P
m Ψ(m, n).

Measurement studies have shown that the dominant virtual co-
ef cients tend to be sparse (see, e.g., [2]) even for relatively small
N ∼ 8. We abstract this concept in the following de nition.

De nition 1 (Sparse Virtual Channels) An N × N Hv is sparse
if it contains D < N2 non-vanishing coef cients. We assume that
each non-vanishingHv(m, n) is CN (0, 1) re ecting the power con-
tributed by the unresolvable paths associated with it. D re ects the
statistically independent DoF in the channel and also the total chan-
nel power ρc(N) = E

ˆ
tr(HvH

H
v )

˜
= N2 PL

�=1 E|β�|2 = D. It
is convenient to model a sparseHv through a mask matrixM

Hv = M�Hiid (4)

where � denotes element-wise product,Hiid is an i.i.d. matrix with
CN (0, 1) entries, andM hasD non-zero (unit) entries.

The coherent ergodic capacity of a MIMO channel, assuming knowl-
edge ofH at the receiver, is given by

C(N, ρ) = max
Tr(Qv)≤ρ

EHv

h
log det

“
I + HvQvH

H
v

”i
(5)

where ρ is the transmit SNR, and Qv = E[svs
H
v ] is the covariance

matrix of the (optimal) Gaussian input; sv = AH
t s. It is shown in

[3] that the capacity-maximizing Qv,opt is diagonal. Furthermore,
for general correlated channels, Qv,opt is full-rank at high SNR’s,
whereas it is rank-1 at low SNR’s. For anHv de ned by a maskM

in (4) we denote the capacity by C(N, ρ,M).

3. CAPACITY-MAXIMIZING CHANNEL
CONFIGURATIONS

In this section, we review the theory behind our approach. We state
the results without proof; the readers are referred to [4] for details.

1This property has been validated with experimental measurements [2].
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The capacity of a sparse channel depends on three fundamental quan-
tities: 1) the transmit SNR ρ, 2) the number of DoF,D < N2, and 3)
the distribution of theD DoF in the availableN2 dimensions inHv .
For any ρ there is an optimal channel con guration, characterized by
anMopt, that yields the highest capacity at that ρ.

De nition 2 (Optimal Channel Con guration) LetM(D) denote
the set of all N × N mask matrices with D non-zero (unit) entries.
For any ρ, the optimal MIMO capacity is de ned as

Copt(N, D, ρ) = max
M∈M(D)

C(N, ρ,M) (6)

and anMopt that achieves Copt(N, D, ρ) de nes the optimal chan-
nel con guration at that ρ.

1 ≤ γ ≤ 2p(N) = N
γ - 1

q(
N

) =
 N

γ /
2

p(N) = N

p(N) = N
γ /2

q(
N

) =
 N

q(
N

) =
 N

γ -
 1

α = α         =1 maxα = α     = γ/2idα = α       = γ - 1min
BEAMFORMING IDEAL MULTIPLEXING

Fig. 2. A family of mask matrices. γ ∈ [1, 2].

Mopt is not unique in general. In [4] we present an explicit family
of mask matrices, re ecting different con gurations of the D DoF,
to characterize the Mopt for any given ρ. The family of mask ma-
trices is de ned by two parameters (p, q) such that D = pq. The
parameter p re ects the multiplexing gain (number of parallel chan-
nels) afforded by the con guration and q re ects the DoF per parallel
channel. For D = Nγ , γ ∈ [0, 2], the matrices can be parameter-
ized via p = Nα, α ∈ [αmin, αmax] where αmin = max(γ−1, 0)
and αmax = min(γ, 1), and q = D/p. The mask matrices are il-
lustrated in Fig. 2 for γ ∈ [1, 2]. We next summarize the properties
of the mask matrices relevant to this paper.

Proposition 1 For a given D = Nγ , γ ∈ [0, 2], and any p = Nα,
α ∈ [αmin, αmax], the mask matrixM(D, p) is an N × N matrix
whose non-zero entries are contained in a sub-matrix of size r × p,
r = max(q, p), consisting of p non-zero columns, and q non-zero
(unit) entries in each column. The corresponding r × p virtual sub-
matrices H̃v de ned by (4) satisfy ρc = D and their transmit and
receive covariance matrices are given by

Λ̃t = E[H̃H
v H̃v] =

D

p
Ip , Λ̃r = E[H̃vH̃

H
v ] =

D

r
Ir (7)

Remark 1 Since the non-zero transmit eigenvalues are identical,
the optimal input allocates power uniformly to the corresponding
transmit dimensions, Q̃v,opt = ρ

p
Ip, and no power to others.

The channel capacity for any M(D, p), C(N, ρ,M(D, p)), is
given by (1) which was derived for large N but yields accurate es-
timates even for relatively small N . The following theorem charac-
terizes the optimal channel con guration.

Theorem 1 For a given ρ, the optimal channel con guration is char-
acterized byM(D, popt) ↔ popt where

popt ≈
8<
:

pmin , ρ < ρlow√
ρD

2
, ρ ∈ [ρlow, ρhigh]

pmax , ρ > ρhigh

(8)

andCopt(N, D, ρ) = C(N, ρ,M(D, popt)). In (8), pmin = Nαmin ,
pmax = Nαmax , ρlow ≈ 4p2

min/D and ρhigh ≈ 4p2
max/D.

Remark 2 (Multiplexing gain versus Received SNR Tradeoff) As
noted earlier, (1) reveals a multiplexing gain (MG) versus received
SNR tradeoff that governs capacity: increasing the MG (p) comes
at the cost of a reduction in ρrx = ρD/p2 and vice versa. The ra-
tio ρhigh/ρlow = (pmax/pmin)2 attains its largest value, N2, for
D = N (γ = 1), whereas it achieves its minimum value of unity for
D = 1 (γ = 0) or D = N2 (γ = 2). Thus, the MG-ρrx tradeoff
does not exist for the extreme cases of highly correlated (D = 1)
and i.i.d. (D = N2) channels. On the other hand, the impact of the
tradeoff on capacity is highest forD = N .

4. CAPACITY-MAXIMIZING ARRAY CONFIGURATIONS

In this section we present a systematic approach for maximizing
MIMO capacity in sparse multipath environments by adapting the
antenna spacings at the transmitter (dt) and receiver (dr). We fo-
cus on the D = N case (see Rem. 2). We rst de ne the notion of
randomly sparse physical channels.

De nition 3 (Randomly Sparse Physical Channels) For a givenN ,
a class H(D) of channels is said to be randomly sparse with D
DoF if it contains L = D < N2 resolvable paths that are ran-
domly distributed over the maximum angular spreads for suf ciently
large antenna spacings dt,max and dr,max; that is, (θr,�, θt,�) ∈
[−1/2, 1/2] × [−1/2, 1/2] in (2). We assume that the path gains
are independent and satisfyN2β� ∼ CN (0, 1).

Maximum antenna spacings serve as the anchor point for relat-
ing to the theory in Sec. 3 and correspond to the MUX con guration
(p = pmax = N ): (dt,max, dr,max) ↔ pmax. The next result de-
scribes the required spacings to create a channel con guration whose
statistics match those induced byM(D, p) for any p in Prop. 1.

Proposition 2 Consider the class of randomly sparse channels with
D = N . For any p, 1 ≤ p ≤ N , de ne the antennas spacings

dt =
p

N
dt,max , dr =

r

N
dr,max (9)

where r = max(q, p) and q = D/p. Then, for each p, the non-
vanishing entries of the resulting Hv are approximately contained
within an r × p sub-matrix H̃v with power matrix Ψ̃ = D

pr
1r×p.

Furthermore, the transmit and receive covariance matrices, Λ̃t and
Λ̃r , of H̃v match those generated byM(D, p) in Prop. 1.

Proof (sketch): The D randomly distributed paths cover maximum
angular spreads (AS’s) in the θ domain at the maximum spacings.
Since θ = d sin(φ)/λ, where φ is the physical path angle (which
remains unchanged), the dt and dr in (9) result in smaller AS’s in
the θ domain: θt,� ∈ [−p/2N, p/2N ] at the transmitter and θr,� ∈
[−r/2N, r/2N ] at the receiver. Since the spacing between virtual
angles isΔθ = 1/N , only p virtual transmit angles and r virtual re-
ceive angles lie within the reduced AS’s. Thus, the non-zero entries
inHv are contained in a sub-matrix H̃v of size r × p. The channel
power ρc = D is uniformly distributed so that E[|H̃v(m, n)|2] =
D
rp
, Λ̃r = (D/r)Ir andΛt = qIp, where the expectation is over the

statistics of theD non-vanishing coef cients as well as their random
locations. The proposition follows by comparison with Prop. 1. �

Prop. 2 implies that for randomly sparse channels theHv gener-
ated by adapting antenna spacings has identical statistics (marginal
and joint) to those generated byM(D, p) in Prop. 1 for p ≤ q, but
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only the marginal statistics are matched for p > q. Thus, the actual
capacity may deviate a little from (1) for p > q especially at high
SNR’s. With this quali cation, we have the following result.

Theorem 2 In randomly sparse physical channels, the optimal chan-
nel con guration for any transmit SNR, ρ, can be created by choos-
ing dr,opt and dt,opt in (9) corresponding to popt in (8).

Remark 3 (Three Canonical Array Con gurations) Three con g-
urations are highlighted in Fig. 1 forN=D=25: MUX –Hv,mux ↔
pmux = N ↔ dt,mux = dr,mux = dmax (Fig. 1(c)); BF –
Hv,bf ↔ pbf = 1 ↔ dt,bf = dt,mux/N (Fig. 1(e)) and dr,bf =

dr,mux (Fig. 1(c)); and IDEAL – Hv,id ↔ pid =
√

N ↔ dt,id =

dr,id = dr,mux/
√

N (Fig. 1(d)). The BF and MUX con gura-
tions are optimum for ρ < ρlow and ρ > ρhigh, respectively. The
IDEAL con guration is a good approximation to the optimum for
ρ ∈ (ρlow, ρhigh). These three array con gurations suf ce for max-
imizing capacity over the entire SNR range in practice.
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Fig. 3. (a): Simulated and theoretical capacities for the three canoni-
cal array con gurations. (b)-(d): Contour plots ofΨ; (b)Ψmux, (c)
Ψid, (d)Ψbf . (e)-(g): Transmit eigenvalues; (e) Λt,mux, (f) Λt,id,
(g) Λt,bf .

We now present a numerical example to illustrate the creation
of Hv,mux, Hv,id, and Hv,bf by adapting the antenna spacings as
in Prop. 2 and Rem. 3. We consider N = D = 25 and rst gen-
erate the physical AoA’s and AoD’s, (φt,�, φr,�) ∈ [−π/2, π/2]2,
for L = 25 paths that are randomly distributed over the maximum
angular spreads at dt,mux = dr,mux = dmax = λ/2. This de nes

Hmux con guration and the locations of the D paths are illustrated
in Fig. 3(b) which shows a contour plot ofΨmux. The correspond-
ing AoA’s/DoA’s in the θ domain are generated for Hv,bf and Hid

using (9), Rem. 3 and θ = d sin(φ)/λ. The contour plots of the
resultingΨid andΨbf are shown in Figs. 3(c) and (d), and conform
to the sizes of the non-vanishing sub-matrices H̃v in Prop. 2; com-
pare also with Fig. 2. As the transmit spacing dt is decreased (with
decreasing ρ), channel power is concentrated in fewer but larger non-
vanishing transmit eigenvalues, as illustrated in Figs. 3(e)-(g). The
capacities of the three con gurations are estimated via 200 realiza-
tions of the scattering environment simulated using (2) by indepen-
dently generating CN (0, 1)-distributed path gains. The estimated
capacities corresponding to uniform-power input (Rem. 1) are plot-
ted in Fig. 3(a) along with the theoretical curves (Fig. 1(b)) using
(1). As evident, the agreement is quite remarkable.

4.1. Discussion

Recon gurable MIMO transceivers can signi cantly enhance link
capacity by delivering the maximum multiplexing gain (N ) over
the entire SNR range. The practical feasibility of recon guration
in cognitive radio in enhanced by the fact that three canonical con-
gurations suf ce for near-optimal performance over the entire SNR
range. Furthermore, only statistical channel state information (CSI)
is needed: an estimate of the number of dominant virtual channel co-
ef cients,D, with signi cant power. Once the receiver has estimated
D, it can simply feedback to the transmitter the index of the optimal
con guration at the desired SNR (log2(3) bits of information).

In the context of cognitive radio and dynamic spectrum access,
recon gurable MIMO transceivers deliver the well-known capac-
ity/spectral ef ciency gains of MIMO systems at all SNR’s, in con-
trast to a xed con guration that only guarantees it at high SNRs.
This directly leads to: i) N -fold reduction in transmission power
at any desired rate, thereby signi cantly reducing interference to
other users, and ii) N -fold increase in the information capacity of
the available “holes” in RF spectrum.

Directions for future work include: i) extensions to more-realistic
scenarios where the dominant scattering paths are non-uniformly
distributed over the angular spreads, ii) extensions to widebandMIMO
transceivers where the effects of multipath sparsity become even
more pronounced, iii) exploiting instantaneous CSI (rather than sta-
tistical) with limited-rate feedback, and iv) optimization of recon-
gurable MIMO links in a network context (accounting for effects
of interference). In particular, limited-rate instantaneous CSI at the
transmitter could signi cantly enhance interference management.
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[5] S. Verdú, “Spectral Ef ciency in the Wideband Regime,” IEEE
Trans. Inf. Th., vol. 48, no. 6, pp. 1319–1343, June 2002.

IV ­ 1356


