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ABSTRACT

Combining transport-layer congestion control with multi-path rout-
ing is a cross-layer approach that provides performance bene ts over
treating the layers separately. We phrase this as an optimisation
problem, examine the case of data transfers, and show how a coor-
dinated controller gives strictly better performance than an uncoor-
dinated controller, which sets up parallel paths. For xed demands,
and the case of random-path selection, we show how coordinated
control also achieves better load balancing than greedy least-loaded
path selection. We then comment on adaptive path selection.

Index Terms— Optimisation, multipath routing, congestion con-
trol, load balancing.

1. INTRODUCTION

Multipath routing, where data can potentially be sent over a number
of paths offers performance and reliability bene ts. Combining mul-
tipath routing with transport layer congestion control is an example
of cross-layer optimisation [1, 2], and offers performance advantages
over treating the layers separately. Routing determines which paths
should be used, whereas rate control determines how much should
be sent over each path.

Our motivating example is data transfers in a fast packet net-
work, such as data transfers using TCP in the current Internet, and
where the transfers are long enough to allow bene ts for multipath
routing. Following the work pioneered by Kelly et al [3], we char-
acterise a rate-control algorithm as the solution to a utility maximi-
sation problem, where users (or end-systems) sel shly choose paths
and rates in such a way as to maximise their net utility, assuming
demand is xed. A particular rate control algorithm, is mapped to
a particular utility function [4]. For example, if T is the round trip
time and the user sends at rate λ, then the utility function

U(λ) = − 1

λT 2
(1)

approximately models TCP Reno’s rate control. The network cost,
which may re ect loss or delay is captured by a penalty function,
which is a function of the load on the network.

Routing and control may be either sender driven or receiver
driven. There are already a number of peer-to-peer receiver-driven
multipath applications, such as Skype which maintains a number of
active paths and chooses the best path, and BitTorrent [5], which uses
a xed number of paths and has a mechanism for randomly choosing
an additional path and retaining the best paths.

A coordinated control actively balances load across a given set
of paths, and is modelled by a single utility function per user. In con-
trast, an uncoordinated controller uses all available paths in parallel
(for example parallel TCP connections), and achieves a much more
limited form of load balancing. Previous work [6] has shown that for

dynamic arrivals (stochastic demand), in general a coordinated con-
troller has a larger schedulable region, and better performance than
an uncoordinated controller.

In this paper, we concentrate on a xed-demand scenario. We
rst examine the case where a xed integer number of paths b is

chosen randomly from a set of size N . We look at the worst case
allocation, a measure of fairness, and show that coordinated control
gives better performance, both for large N , where we quote scaling
results, and for small N , where we give numerical examples. We
also show this does better than greedy-least-loaded resource selec-
tion, as in Mitzenmacher [7].

We then allow users to change their routes, by resampling to
choose better routes.

2. OPTIMISATION FRAMEWORK

2.1. Model and Notation

Consider a network where paths are indexed by r ∈ R, and a set of
user classes, indexed by s ∈ S . Users of class s can use any path
from subset R(s) of R. Without loss of generality we may assume
these sets are disjoint. Network capacities or feedback signals (such
as loss, packet marking or delay) are captured by some convex non-
decreasing penalty function Γ : R

R
+ → R+ ∪ {+∞} - see [6] for

examples. Typically Γ is the sum of penalty functions associated
with each resource type. We can also interpret the penalty functions
as costs and their derivatives as “prices”, making use of the notation
pr = ∂rΓ(Λ).

2.2. Uncoordinated Congestion Control

We assume that class s-users try to maximise their throughputs, and
that the rate control along a given route is a congestion control mech-
anism, such as TCP, that implicitly performs some utility maximisa-
tion, where the utility to a single user sending at rate λr through route
r is Ur(λr). For tractability, we assume that Ur is a strictly concave
increasing function that is continuously differentiable on (0,∞).

Denote by Nr , r ∈ R(s), the total number of connections made
by class s users along route r and Ns the total number of connections
user s makes , then

∑
r∈R(s)

Nr = Ns, s ∈ S, (2)

where typically either Nr or Ns is xed. For example, if there are
N ′

s class s-users (with N ′
s xed), and each class s user is restricted

to using the same xed number b of connections that can be along
routes r ∈ R(s) (or if b is the cardinality of R(s) for all s), then
Ns := bN ′

s. The outcome of congestion control for given numbers
Nr of connections along each route r, is de ned to be the solution
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of the welfare maximisation problem

Maximise
∑
s∈S

∑
r∈R(s)

NrUr(Λr/Nr)− Γ(Λ). (3)

over Λr ≥ 0 where Λ = {Λr} denotes the vector of aggregate rates
over all routes. Note that the utility function can depend upon the
route taken.

The function being optimised in (3) is a strictly concave func-
tion, over a convex feasible region; hence the problem is Strong La-
grangean and the unique maximum is attained.

2.3. Coordinated Congestion Control

In contrast to the uncoordinated case, we associate a single utility
function Us(·) with a class s user, assumed strictly concave, increas-
ing, and continuously differentiable on (0,∞). Ns is the number of
class s users. We can then assume that the allocation to a class s-user
is Λs =

∑
r∈R(s) Λr , where optimal rates Λr solve the following

welfare maximisation

Maximize
∑

s

NsUs

(∑
r∈R(s) Λr

Ns

)
− Γ(Λ) (4)

over Λr ≥ 0, r ∈ R. (5)

Note that if the utility functions Ur in (3) are path independent and
coincide with Us for all r ∈ R(s), then Jensen’s inequality shows
welfare for the coordinated solution (solving (4)) is at least as large
the the welfare for the uncoordinated (solution to (3)). This coordi-
nated problem is strong Lagrangean, and its solution characterized
by the Kuhn-Tucker conditions

U ′
s

(∑
r∈R(s) Λs

Ns

)
≤ ∂rΓ(Λ), (6)

U ′
s

(∑
r∈R(s) Λs

Ns

)
< ∂rΓ(Λ)⇒ Λr = 0, (7)

and, as a consequence, the allocation for user s only puts a non-
zero allocation on paths whose price pr is equal to the minimum
price across possible routes. There may be only one or several such
lowest-cost paths. Note that distributed rate control algorithms exist
for all of the above optimisation problems, e.g. [8, 9].

3. STATIC ROUTE SELECTIONS AND LOAD BALANCING

We now concentrate on the following scenario: there are N re-
sources (each corresponding to a single route r), each with unit ca-
pacity and associated penalty function

Γr(Λr) =

{
0 if Λr ≤ 1

∞ otherwise.
(8)

There are aN users, and each user selects b resources at random
from the N available, where b is an integer larger than 1; hence R(s)
is this set of b resources (routes). (The theoretical results assume
sampling with replacement, whereas the numerical results assume
sampling without replacement, which is more natural in practice).
Denote by λij the rate that user i obtains from resource j, and let
Aij equal 1 if user i can access resource j, and 0 otherwise. We
consider the worst case rate allocation of users under two distinct
bandwidth sharing scenarios, rstly when there is no coordination

between the distinct b connections of each user, and secondly when
each user implements coordinated multipath congestion control. In
this section, we assume that Ur = U for all r.

3.1. Scaling results

In the uncoordinated case, it is straightforward to show

Lemma 3.1 The optimal allocation is independent of the choice of
utility functions Ur , and is given by λi =

∑
j λij , where λij =

1/
∑

i Aij .

That is, if a resource serves n users, each gets rate 1/n from that
resource. It is then possible to show [10],

Theorem 3.1 For xed parameters a and b, then for any ε > 0, one
has the following

lim
N→∞

P

(
min

i=1,...,aN
λi ≤ (b2 + ε)

log(log(N))

log(N)

)
= 1. (9)

In other words, the worst case allocation in this scenario decreases
like log(log(N))/ log(N). This is comparable with the worst case
allocation that one gets if just a single path is used: using a classical
balls and bins models, eg [7], where we imagine users throwing a
ball into the bin (resource), the inverse of the maximum number of
balls in bin scales as log(log(N))/ log(N) as N increases.

For coordinated congestion control, the rates λij solve

Maximise
aN∑
i=1

U

(
N∑

j=1

Aijλij

)

subject to
aN∑
k=1

Akjλkj ≤ 1, 1 ≤ j ≤ N

over λij ≥ 0

(10)

It is then possible to prove the following max-min fair characterisa-
tion of the optimal rates

Lemma 3.2 Let (λ∗
i ) be the optimal user rates solving the above

optimisation (10), then (λ∗
i ) is insensitive to the particular strictly

concave, increasing utility functionU chosen. Denote by x1 < x2 <
· · · < xm the distinct values of the λ∗

i , ranked in increasing order.
Let I1 denote the set of indices i such that λ∗

i = x1. Then for any
other feasible allocation (λi), necessarily mini∈I1(λi) ≤ x1. If
there is equality in the above,λi ≡ x1 on I1. x1 can be found by
solving the LP

Maximise λ∗

subject to
N∑

j=1

Akj ≥ λ∗,
aN∑
k=1

Akjλkj ≤ 1, 1 ≤ j ≤ N

We can then prove the following [10]

Theorem 3.2 If (λ∗
i (N)) is the optimal allocation for coordinated

congestion control for given N, a, b, then there exists x > 0, that
depends only on a and b, such that:

lim
N→∞

P
(
min

i
λ∗

i (N) ≥ x
)
= 1. (11)

A suf cient condition for this evaluation to be valid is that x <
min(1/a, b− 1), and furthermore:

∀u ∈ (0, a], ah(u/a) + h(ux) + bu log(ux) < 0, (12)

where h(x) := −x log(x) − (1 − x) log(1 − x) is the classical
entropy function.

IV  1342



This says that the worst-case allocation is bounded away from zero,
as N ↑ ∞, and strictly better than the uncoordinated allocation. This
particular allocation problem has links with the load balancing work,
quoted by Mitzenmacher [7],where if users arrive in a random order,
and choose the lowest-loaded resource from among their b candidate
ones, a ‘greedy least-loaded’ strategy, then with high probability the
maximum resource is at most log logN/ log b + O(1). Hence the
worst-case rate scales as 1/ log(log(N)), whereas we do better than
this. We achieve better results by actively balancing load across sev-
eral available resources.

Informally, the coordinated congestion control is able to “shuf-
e” the load amongst the union of the sets of b resources, and for

moderate b do almost as well as if each user saw the global list of
N resources rather than just a subset of size b. We can think of the
coordinated approach as performing a secondary optimisation once
all the random choices of resources have been made. In the context
of data transfers, the implemented rate control will take a nite time
to adjust the rates across paths to perform the optimisation, for ex-
ample a few round trip times. However, the result is applicable when
the amount of data that users have to transfer is large compared to
the resource capacity available, implying the transfer time is orders
of magnitude larger than a round trip time.

A few remarks are in order. 1. The resource utilisation is the
same for both coordinated and uncoordinated, that is the number of
resources utilised is the number of non-empty columns of the matrix
A, bounded above by N , and each resource used will serve at rate
1. 2. The coordinated allocation maximises the minimum rate any
user receives (Lemma 3.2), and also minimises the expected time to
transfer a unit of data (where the expectation is across users). This
last fact follows from the fact that we are free to use the utility func-
tion U(x) = −1/x in the coordinated optimisation, hence maximis-
ing the aggregate utilities is equivalent to minimising the aggregate
download time for a xed data unit, and hence to minimising the
average.

3.2. Small System results

The above scaling results describe large system behaviour. We now
look at what happens for small systems (small N ) by randomly sam-
pling sets of size b and calculating the optimal allocations. In what
follows, we set a = 1, and vary b. The scaling results suggest that
choosing b relatively small, b = O(log(N)) is suf cient for coordi-
nated control to perform with high probability a “perfect” allocation
where every user receives rate one. If we pick a particular resource,
then with probability (1− b/N)N the resource is not chosen by any
user, and hence “isolated”. Hence the expected number of isolated
resources is N(1− b/N)N , and the best rate-allocation (in max-min
terms) is 1− (1−b/N)N . If b = log(N), then (1−b/N)N ≤ 1/N
with the limit approached as N ↑ ∞, therefore if we put b = log(N)
we expect the best (max-min) rate to be 1− 1/N . For example, for
N = 100, log 100 ≈ 5 giving an expected rate of 0.99, while for
N = 1000, log 1000 ≈ 7 giving an expected minimum rate 0.999,
whereas log(log(N))/ log(N) is 0.33 and 0.28 respectively which
is consistent with the results or simulation (Table 3.2 below).

Figure 1(a) shows the results of 100 sample runs for N = 10
and b = 2 and b = 3, where we plot the minimum rate for each
sample, labelled by b. Coordinated performs much better than unco-
ordinated, and for b = 3 coordinated has in many cases achieved a
‘perfect’ allocation. Figure 1(b) gives means and 95% con dence
intervals for N = 100, 110 and b = 2...10. There is very little dif-
ference between N = 100 and N = 110. Figure 1(c) gives means
and 95% con dence intervals for N = 100, for coordinated, un-
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(a) Sample runs with N = 10,and b = 2, 3
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Fig. 1. Coordinated and uncoordinated control, with 100 runs.

coordinated, greedy least-loaded strategy and coordinated with re-
sampling, where users resample in time and move to better routes
(see the next section). This last approach gives equal allocation to
all users and achieves a perfect allocation provided the resampling
is rich enough. We see that coordinated outperforms uncoordinated,
and only a small value of b is needed for almost perfect load balanc-
ing. Interestingly the greedy load balancing does not do as well as
uncoordinated - essentially in the simulations there was always some
resource which has more than one user associated with it.

Results for N = 1000 are given in Table 3.2, where n = 10 runs
were done. Means are shown (μ) along with the standard deviation
for the mean (σ/

√
n).

For N = 100, 1000 the rates are consistent with the scaling
arguments given above. In the case of the greedy least-loaded al-
gorithm described above, for N = 1000, we would expect with
high probability a minimum load to approximate log b/ log logN
whereas we actually obtained rates of 1/3, 1/2, 1/2 for b = 2, 5, 10
- for example with b = 10 this means there was at least one resource
which had two associated users.
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N b coord uncoord
μ σ/

√
n σ/

√
n

1000 2 0.73 0.003 0.31 0.008
1000 5 0.993 0.001 0.55 0.004
1000 10 1.00 0.0000 0.74 0.001

Table 1. Means and Standard Deviations N = 1000 and varying b

4. DYNAMIC ROUTE SELECTION

In practice, there may be a large number of potential routes available
to a user, and when we move outside the symmetric single capacity
example of Section 3 we would like to achieve the best possible out-
come without having to consider all potential routes simultaneously.
It turns out we can do this by allowing users to adapt their route
sets to move towards better ones. We adapt our framework, and as-
sume that class s-users can use concurrently paths from a collection
c, where c ⊂ R(s), and denote by C(s) the family of all such path
collections that are allowed. For de niteness, think of C(s) as the
collection of all subsets of R(s) of size b. Denote by Nc the num-
ber of users with associated set of connections equal to c, giving the
constraint ∑

c∈C(s)

Nc = Ns, for s ∈ S. (13)

λc is the rate each of the Nc users receive, and Λr =
∑

c Ncλc. For
coordinated control, we assume rate adaptation of the form (see [4]):

d

dt
λc,r = κc,r

[
U ′

s(c)(λc)− ∂rΓ(Λ)
]
+ μc,r, (14)

where kc,r are positive gain parameters and μc,r ≥ 0 satis es μc,rλc,r ≡
0. Denote the net bene t per unit time for type s users streaming
along routes r in some set c as Bc, then in equilibrium this is

Bc(λc) = Us (λc)−
∑
r∈c

λc,rU
′
s(λc),

since at equilibrium the price pr = U ′
s(λc).

Now at instants of a Poisson process having rate γcc′ users cur-
rently using the set c will be offered a set c′, and will use the set c′

instead, provided they increase their net bene t. Given our assump-
tions on U , B(·) is an increasing function, hence equivalently, users
can switch to path c′ if they receive a higher rate. If there is a large
population of users that switch according to this rule, then we can
consider the deterministic limit equations

d

dt
Nc =

∑
c′

Nc′γc′cφ(Bc−Bc′)−
∑
c′

Ncγcc′φ(Bc′−Bc) (15)

where φ is the indicator function or a smooth approximation to it,
and where there is an implicit separation of time scales. We can then
show [10]

Theorem 4.1 If the penalty function Γ is continuously differentiable
and convex decreasing, Us strictly concave increasing, and for each
class s, any r ∈ R(s), any given set c ∈ C(s), there is some c′ such
that r ∈ c′ and γcc′ is positive Then any solution (Nc, λc,r) to the
system of ODE’s (14-15) converges to the set of maximisers of the
welfare function

W(λ, N) :=
∑
s∈S

∑
c⊂R(s)

NcUs(λc)− Γ(Λ) (16)

under the constraints (13). The corresponding equilibrium rates
(Λr) are solutions of the coordinated welfare maximisation problem
(4–5).

This means we are able to converge to a social optimum, as if we
were simultaneously exploring all routes, but by having users limited
to using a small set of routes at a particular time, using a coordinated
congestion controller and then moving to better routes over time.
Does this also hold for uncoordinated congestion controllers? Only
if the utility functions are the same across all paths, in other words
have no RTT bias, unlike say TCP Reno. In this case we can prove a
similar welfare maximisation result, provided we replace Us(x) by
bUs(x/b).

5. CONCLUDING REMARKS

We have shown the bene ts of combining congestion control with
multipath routing, showing that in a static setting, where random
path sets are chosen, coordinated controllers outperform uncoordi-
nated ones. In a dynamic setting, by having limited set of routes, but
allowing evolution to better routes over time, we can implement a
distributed welfare maximisation with coordinated controllers. For
uncoordinated controllers, this is only true if there is no RTT bias in
the rate controllers. This has implications for the design of practical
multi-path rate control algorithms.
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