
EFFICIENT IMPLEMENTATION OF A QUASI-MAXIMUM-LIKELIHOOD DETECTOR
BASED ON SEMI-DEFINITE RELAXATION

Mikalai Kisialiou and Zhi-Quan Luo

University of Minnesota
Department of Electrical and Computer Engineering

Minneapolis, MN, 55455, United States,
�kisi0004, luozq�@umn.edu

ABSTRACT
Existing approaches to the Maximum-Likelihood (ML) detection pro-
blem in digital communications either suffer from exponential com-
plexity (e.g. Sphere Decoder and its variants) or exhibit signi -
cant Bit-Error-Rate (BER) degradation (e.g. LMMSE Detector). In
this paper we present an ef cient implementation of a semi-de nite
relaxation-based detector (SDR Detector) which can achieve near-
optimal BER performance with worst-case polynomial complexity.
This implementation (available online) can be ��� times faster than
an off-the-shelf SeDuMi-based implementation, outperforms Sphere
Decoder in low Signal-to-Noise Ratio (SNR) or high dimension regi-
mes, and matches the speed of Sphere Decoder in the high SNR
regime. The core of the detector is an optimized dual-scaling interior-
point method (implemented in C) for the relaxed semi-de nite pro-
gram. SNR-sensitive improvements are achieved by a dimension
reduction strategy and a warm start technique based on a truncated
version of the Sphere Decoding algorithm. Extensive numerical sim-
ulations show that the BER performance and the running time of
SDR Detector compare favorably to that of other near-optimal de-
tection strategies.

Index Terms— Maximum likelihood detection, MIMO systems,
semi-de nite relaxation, interior-point methods, duality.

1. INTRODUCTION

Consider a standard Rayleigh fading vector communication channel
with � transmit and� receive antennas:

y �
�
��� H s� v� (1)

where s � �������� is the vector of transmitted signals, � is
Signal-to-Noise Ratio (SNR), H � �

��� � ��� � � ��� �� is the
matrix of fading coef cients, v � �

� � �� � � ��� �� is i.i.d. noise,
and y � �

� is the vector of received signals. The same channel
model can be used to describe a synchronous CDMA multi-access
channel with � users. ML detection is known to deliver optimal BER
performance in many practical scenarios. For binary modulated sig-
nals, the ML detection problem is given by:

s�� � ��	 
��
s���������

�y�
�
��� H s��� (2)

This problem is known to be NP-hard. When problem dimensions
are small, exhaustive search can be applied to solve (2). However,
for large� and �, the exhaustive search is impractical.
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In this work we focus on suboptimal strategies to solve (2) with
near-optimal BER performance. Sphere Decoding algorithm [1] and
its variants [2] achieve lower complexity by restricting the exhaus-
tive search to a sphere centered at the zero-forcing estimate. In the
high SNR regime, this strategy allows a fast implementation due to
proximity of the ML solution to the zero-forcing estimate. However,
exponential complexity [3] of Sphere Decoder makes the algorithm
impractical in low SNR regime or for large problems.

An alternative approach [4] with near-optimal BER performance
is based on a convex semi-de nite relaxation of the ML detection
problem followed by a (randomized) rounding procedure. Interior-
point methods can be used to implement this strategy with polyno-
mial worst-case complexity, �������. The running time of existing
semi-de nite relaxation detectors scales well with problem size and
is insensitive to SNR. This insensitivity is a blessing in the low SNR
regime where the ML detection problem is more dif cult. However,
it becomes a curse in the high SNR regime since it implies the algo-
rithm fails to effectively exploit the low noise property of the chan-
nel, as does the Sphere Decoder. Another drawback of the current
implementations is the lack ef cient termination procedure. All bits
are rounded simultaneously irrespective of their reliabilities.

The implementation of the quasi-ML detector presented in this
paper, SDR Detector, avoids the bottlenecks of the semi-de nite de-
tector or exponential complexity of Sphere Decoder. The proposed
algorithm achieves near-optimal BER performance with complex-
ity that scales polynomially in all SNR regimes and for all problem
dimensions. The core of the proposed implementation is the dual-
scaling interior-point algorithm [5]. A warm start technique imple-
mented with a truncated version of the Sphere Decoding algorithm
provides an SNR-sensitive initialization. The standard randomized
rounding step is replaced with a dynamic dimension reduction tech-
nique which estimates bit reliabilities at every iteration of the dual-
scaling algorithm and rounds those bits whose reliabilities exceed a
given threshold. The contribution of the rounded bits is then elimi-
nated from the ML problem, leading to a reduced problem size and
simpli ed computation in subsequent interior-point iterations.

2. QUASI-MAXIMUM-LIKELIHOODDETECTION

A. Sphere Decoder
Sphere Decoder originates from the algorithm for computing the
shortest vector in a lattice [1]. Various improvements [2] (e.g. ad-
justable radius search procedure) have been proposed to adapt it to
the ML detection problem, demonstrating impressive running time
for small systems operating in the high SNR regime. Unfortunately,
(average and worst-case) complexity of the Sphere Decoding algo-
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rithm is exponential [3]. A lower bound on the expected complexity
of Sphere Decoder for binary-modulated signals is given by:

���� � ������ � �� ���� � ������ ���

For small systems operating in the high SNR regime (product � ����
is small) the running time of Sphere Decoder implementations is
dominated by initialization, memory allocations and input-output
operations. For large systems or in the low SNR regime (product
� ���� is large) the running time of any Sphere Decoding imple-
mentation grows exponentially. This behavior is a direct result of the
nature of exhaustive search which is at the core of Sphere Decoder.
For a polynomial time radius selection procedure the expected num-
ber of vectors found inside a sphere with at least one feasible point
inside is exponential, causing exponential complexity of such im-
plementations. Therefore, a different approach to the ML detection
problem is required in order to construct an algorithm whose com-
plexity scales well in all SNR regimes and for problems of large
dimensions. Quasi-ML detection based on semi-de nite relaxation
provides an algorithm that offers theoretically guaranteed worst-case
polynomial complexity.

B. Semi-de nite relaxation
TheML detection problem (2) allows an equivalent reformulation [4]:

��� �� 	
� Trace�QX�
s.t. diag�X� � 1�

X � ��
X � xx� �

(3)

where matrix Q � ������������ and vector x � ���� are:

Q �

�
����� H�H ��

��� H� y
����� y�H �y��

�
� x �

�
s
�

�
� (4)

The semi-de nite detector [4] relaxes the constraint on the rank of
matrix X to obtain a convex Semi-De nite Program (SDP):

���X� �� 	
� Trace�QX�
s.t. diag�X� � 1�

X � ��
(5)

A subsequent randomized rounding procedure generates estimates
of transmitted signals based on the optimal solution X��	 of this
SDP [4]:

� Compute the spectral decomposition X��	 �
����


�� 	
u
u�

and set v
 �

�
	
u
� 
 � �� � � � � � � �.

� Pick vector v��
 that corresponds to the largest eigenvalue
v��
 � 
��	
���
���� ��v
�	.

� For each entry �
 de ne Bernoulli distribution:

Pr��
 � ��	 � �� � ���

 ����
Pr��
 � ��	 � ��� ���

 ����

(6)

� Generate a xed number (typically � � ��) of i.i.d. (�+1)-
dimensional vector samples �x� according to the distribution (6).

� For all samples, set �x� �� ��x� if (�+1)-st entry of �x� is equal
to ��.

� Pick x��� �� 
��	
�� �x��Q�x� and set the best achieved
objective value ���� �� x����Qx���.

3. SDR DETECTOR

A. Dual-scaling algorithm
The dual-scaling interior point method [5] has been developed to

solve general large-scale semi-de nite programs. In addition to the
advantages associated with a standard interior point method (conver-
gence proof with polynomial worst-case complexity, certi cates of
infeasibility when no solution exists, robustness and scalability, etc)
the dual-scaling method ef ciently exploits the structure and sparsity
of in the dual semi-de nite programs.

Existing implementations of the semi-de nite relaxation detec-
tor rely on interior-point methods which solve the primal problem (5)
and/or the following dual problem:

���g� �� 	
� g� 1
s.t. Q� Diag�g� � ��

(7)

The algorithm computes a sequence of primal feasible (given by X)
and dual feasible (given by g� S) points on the central path, given by:

diag�X� � 1�
Q� Diag�g� � S�

SX � 
I�
(8)

As 
 
 �, the sequence converges to the optimal solution and the
system (8) speci es Karush-Kuhn-Tucker (KKT) optimality condi-
tions for X� g� S. Each step along the central path is calculated as the
solution to the following linearization of the system (8):

diag��X� � 0�
�S�Diag��g� � 0�


S���S S�� ��X � 
S�� � X�
Solving this system of matrix equations with respect to dual vari-
ables, we obtain the following condition:



�
S�� Æ S����g � 1� 
 diag�S���� (9)

where Æ denotes Hadamard (component-wise) product. For a given
parameter 
, the preconditioned conjugate gradients method is ap-
plied to solve the linear system (9) for the dual step direction�g.

Once �g is selected by solving (9), inexact line search of the
step size � for the updated dual variables g� �� g � ��g is per-
formed by minimizing the dual potential function

�� �� � ���
�
�� � �g��� 1

�
� ��� ���

�
Q� Diag�g��� �

where �� � Trace�QX� is an upper bound computed at some pri-
mal feasible X. As long as the dual vector g� remains feasible, the
objective weight factor � that minimizes the dual potential function
is given by � � ��� � �g��� 1��
. The algorithm starts with � ��
	
� ��� �������
	 and then backtracks until suf cient descent or
termination tolerance is achieved. The maximum step size ���

that ensures feasibility of g� � � g � Q � Diag�g� � �	, is given
by the distance to the boundary of the semi-de nite cone, which is
equal to 	����


�
L��Diag��g�L��

�
, where L is the lower triangu-

lar Cholesky factor of S � Q � Diag�g�. To compute the largest
eigenvalue of A � L��Diag��g�L�� we apply Lanczos proce-
dure [6]. For a symmetric matrix A and a vector u�� �u�� � �,
Lanczos iteration constructs a basis U
 � �u�� � � � � u
� in the Krylov
subspace �u��Au�� � � � �A
��u�	, and a tridiagonal matrix T
, 
� 
,
such that

AU
 � U
T
 � �
��u
��1�

U�
 AU
 � T
�
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Input:��������� ��

� �� is starting radius
� �� is radius step size
� �� is number of radii to be searched
� �� is number of vectors to be searched

�� � �� ��

�� while �number of radii searched � ���
�� if �found a vector inside sphere with radius ��
	� s��� �� 1
 ���� �� �y�

�
��� H 1��

�� while �number of vectors searched � ���
�� for each �s found in the sphere�

� ��s� �� �y�

�
��� H s��

�� if ���s� 	 �����
�� ���� �� ��s�
 s��� � s
��� end if
��� end for
��� if �no vectors left in sphere with radius ��
��� returnML solution s���

�	� end if
��� end while
��� return best guess s���

�
� end if
��� � �� � ���
��� end while
��� return s��� is not found

Fig. 1. Truncated version of Sphere Decoder

where 1� is 
-th basis vector. The extreme eigenvalues of A are well
approximated by those of T� with far fewer iterations 
 than the prob-
lem dimension �.

B. Warm start with Sphere Decoder

The Sphere Decoding algorithm with adjustable radius search serves
as a fast heuristic test of low noise channel realizations. The initial-
ization routine of SDR Detector uses a truncated version of Sphere
Decoder (see Fig. 1) to curb its exponential complexity in low SNR
regime or for large problems. The truncated Sphere Decoder is
restricted by the following constant parameters: initial radius ��,
radius increase ��, upper bound �� on the number of radius in-
creases, and upper bound �� on the number of times the objective
function can be computed.

The maximum number of sphere expansions is selected to en-
sure that complexity of the truncated Sphere Decoder does not dom-
inate complexity of the dual-scaling algorithm:

�
�
����

�
� C(SDP) � C(SD) � �

�
��� ��������

�
�

Thus, the number of times the algorithm is allowed to increase the
radius of the sphere is set �� � �

��
���� �

����
���

�
. For the

heuristic radius search procedure the expected number of vectors
found within a sphere is exponential, ����. SDR Detector heuristi-
cally sets the number of vectors allowed to be searched in a sphere to
be a decreasing function of � and �: �� � ���

�
���

�
�������

��
.

The smallest objective value ���� achieved by the truncated
Sphere Decoder is used to initialize upper bound �� �� ���� in the
dual-scaling algorithm. A good initial upper bound substantially im-
proves the convergence of the dual-scaling interior-point method.

Input: �� 
��	
� �� � 	 � 	 �� is reliability threshold
� 
��	 is set of rounded bits

�� � � Find the most reliable bit � �
�� 
��	 �� �
��
� �� 	��
�

� 	 
 
�
� �� �
�� for �
 
� � 	 
 � ��
	� if �	��
�

� 	 � ��
��
�� ��
� �� 	��
�

� 	 
 
�
� �� 

�� end if

� end for
�� � � Round bits �-fraction away from the maximum � �
�� for �
 
� � 	 
 � ��
��� if �	��
�

� 	 � � ��
��
��� �� �� sign ���
�

� ��
�
��� � � � Round i-th bit � �

��� 
��	 �� �
��	� 
� � � Add i-th bit to the set � �
��� end if
�	� end for
��� � � Reduce problem dimension � �
��� � �� �� 	
��		
�
� Recursively update matrix Q

Fig. 2. Dimension reduction technique

C. Dimension reduction technique

Every step �g along the central path in the dual-scaling algorithm
requires an expensive linear solve of the system (9) with the cost
of ����� operations. In addition, the randomized rounding proce-
dure (6) needs only the principal eigenvector v�
� of X�
�, (v�
�

conveys bit-reliability information). We propose a dimension reduc-
tion technique that computes bit reliabilities based on the dual vari-
ables g bypassing expensive computation ofX. During every interior
point iteration, a fraction of the most reliable bits is rounded and their
contribution is eliminated from semi-de nite problems (5) and (7).
This reduces the problem size and greatly simpli es the subsequent
interior point iterations.

Equations (8) show that the eigenvectors ofX and S are the same
on the central path, and the principal eigenvector of X is the eigen-
vector of S corresponding to the smallest eigenvalue:

v�
� � ��� ���
u��u���

u� Su � ��� ���
u��u���

u� �Q� Diag�g�� u�

Given a constant parameter � and dual vector g on the central path,
we use Lanczos procedure to compute v�
� and round the �-fraction
of the most reliable bits, see Fig. 2 for a description. Eliminating the
contribution of the rounded bits from matrixQ can be accomplished
with a quadratic total cost, �����, due to the matrix structure (4):

1. Update the received vector y �� y�
�

������
��h�, where h�

is the 
-th column of matrixH.

2. Remove the 
-th row and the 
-th column of matrix Q.

3. Update matrixH by removing columns with indices from
��	.

4. Recompute the last row and column of matrix Q as the new
product: �

�
��� H� y.

5. Update the �� � �� � � ��-entry of matrix Q by computing
the new product: y� y.

The complexity of the dimension reduction technique, �����, is
dominated by Lanczos procedure to compute the principal eigen-
vector v�
�.
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Fig. 3. Running time comparison, � � ��

Fig. 4. Bit-error-rate comparison, � � ��

4. SIMULATIONS

In this section we compare the running time and BER performance
of SDR Detector with Sphere Decoder, SeDuMi-based semi-de nite
relaxation detector, and DSDP-based semi-de nite relaxation detec-
tor with the dimension reduction technique. We selected an ef cient
implementation of the dual-scaling interior point method provided
by DSDP optimization package [7]. All detectors, except for the
SeDuMi-based one, are implemented in ANSI Cwith mex-interfaces
for Matlab to eliminate language-speci c differences.

Fig. 3 and 4 demonstrate the average running time and corre-
sponding BER performance vs. SNR achieved by the selected quasi-
ML detectors for problem size � � ��. Notice, the running time
of DSDP-based (SeDuMi-based) detector is insensitive to SNR, and
BER performance shows � dB (�-dB) SNR loss. Sphere Decoder
is faster than semi-de nite based detectors in high SNR regime but
suffers from exponential complexity for SNR lower than �� dB.
SDR Detector matches the speed of Sphere Decoder in high SNR
regime, follows the running time of polynomial detectors in low
SNR regime, and enjoys near-ML BER performance.

Figs. 5 and 6 compare the average running time for large prob-
lems and in low SNR regime. The running time of polynomial com-
plexity detectors (SDR Detector, SeDuMi and DSDP based) scales
well in both regimes, remaining in the sub-second region, while the
running time of Sphere Decoder exhibits exponential behavior.

Fig. 5. Running time for large problems, � � �� ��

Fig. 6. Running time in low SNR regime, � � ��
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