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ABSTRACT

This paper presents a framework for the modelling of tem-
poral characteristics of musical signals and an approximate,
sequential Monte Carlo inference scheme which yields esti-
mates of tempo and rhythmic pattern from onset-time data.
These two features are quanti ed through the construction
of a probabilistic dynamical model of a hidden ‘bar-pointer’
and a Poisson observation model. The capabilities of the sys-
tem are demonstrated by tracking the tempo of a 2 against 3
polyrhythm and detecting a switch in rhythm in a MIDI per-
formance.

Index Terms— Music, Statistics, Poisson distributions,
Monte Carlo methods

1. INTRODUCTION

An important feature of intelligent music systems is the abil-
ity to infer attributes related to temporal structure. These at-
tributes may include musicological constructs such as tempo
and rhythmic pattern. The recognition of these characteristics
forms a sub-task of automatic music transcription - the un-
supervised generation of a score, or description of an audio
signal in terms of musical concepts. For music categorization
systems, tempo and rhythmic pattern are de ning features of
genre and therefore useful features for indexing of data sets.
Much work has been done on detecting the ‘pulse’ or foot-

tapping rate of musical audio signals [1],[2]. However these
approaches do not distinguish between tempo and rhythm.
Goto and Muraoka detail a system which recognizes beats in
terms of the ‘reliability’ of hypotheses for different rhythmic
patterns [3]. Cemgil and Kappen model MIDI onset events
in terms of a tempo process and switches between quantized
score locations [4]. Raphael independently proposed a similar
system [5]. Hainsworth and Macleod infer beats in a similar
framework from raw audio signals [6], but rhythmic pattern
is still not explicitly modelled.
Takeda et al. perform tempo and rhythm recognition from

MIDI data by analogy with speech-recognition, but do not
accommodate polyrhythms [7]. Klapuri et al. de ne metrical
structure in terms of pulse sensations on different time scales,
but do not explicitly discriminate between different rhythmic
patterns [8].

In [9], a novel model of temporal structure in musical sig-
nals was introducedwhere exact inferencewas feasible. How-
ever, for certain extensions of the model, the exact inference
scheme suffered from high computational requirements since
it involved storage and manipulation of very large vectors.
In this paper we focus on the development of a practi-

cally scalable, sequential Monte Carlo inference scheme for
a model of tempo and rhythmic pattern analogous to that in
[9]. Development of such an inference scheme is challeng-
ing in this case due to the multi-modality of posterior prob-
ability distributions. In practical terms, this issue arises for
the same reasons that human listeners can often ‘explain’ the
same piece of music in terms of several different combina-
tions of tempo and rhythmic pattern. Whilst the examples in
this paper take as input MIDI onset data, the same framework
could be used with onset times obtained from existing onset
detection systems, e.g. [10].
In the Bayesian paradigm the task of joint estimation of

tempo and rhythmic pattern is treated as an inference prob-
lem, where given a sequence of observations
y1:n ≡ (y1, y2, ..., yn) the aim is to compute posterior den-
sities over the hidden state variables x0:n ≡ (x0,x1, ...,xn).
In a sequential setting we rst postulate a Markovian prior
density over the hidden state variables, p(xk+1|xk), which
describes how the state variables evolve from one time index
to the next. The observations are then related to the hidden
state via p(yk|xk). Up to a constant of proportionality, the
joint posterior density is given by:

p(x0:n|y1:n) ∝ p(x0)

n∏
k=1

p(yk|xk)p(xk|xk−1) (1)

2. BAR-POINTERMODEL

The system is built around a dynamicalmodel of a ‘bar-pointer’,
a hypothetical, hidden object which maps an observed time-
series to one period of a latent rhythmical pattern, i.e. one bar.
At time tk = kΔ, k ∈ {1, 2, ..., n} and Δ a constant, denote
by φk ∈ [0, 1) the position of the bar-pointer and denote by
φ̇k ∈ [φ̇min, φ̇max] its velocity, where φ̇min > 0. The proba-
bilistic kinematics of the bar-pointer are modelled as being a
piece-wise constant velocity process:
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φk+1 = (φk +Δφ̇k)mod 1 (2)

p(φ̇k+1|φ̇k) ∝ N (φ̇k, σ2φ)× Iφ̇min≤φ̇k+1≤φ̇max
(3)

where Ix is equal to 1 when x is true and zero otherwise.
The velocity of the bar pointer is de ned to be proportional to
tempo.
A rhythmic pattern indicator, rk, takes one value in a nite

set, for example rk ∈ S = {0, 1}, at each time index k.
The elements of the set S correspond to different rhythmic
patterns, which are described in section 3. For now we deal
with the simple case in which there are only two such patterns,
and switching between values of rk is modelled as occurring
if a bar line is crossed, i.e.:
if φk < φk−1,

p(rk|rk−1, φk, φk−1) =

{
pr, rk �= rk−1

1− pr, rk = rk−1
(4)

otherwise, rk = rk−1, where pr is the probability of a change
in rhythmic pattern. In summary, xk ≡ [φk φ̇k rk]

T speci es
the state of the system at time index k.

3. OBSERVATION MODEL

In this model, MIDI onset events are treated as being Poisson
distributed with an intensity parameter which is conditioned
on the position of the bar-pointer and the rhythm indicator
variable. De ning the Poisson intensity in this fashion allows
quanti cation of the postulate that for a given rhythm, there
are regions in one bar in which onsets occur with high proba-
bility. This formalizes the onset time heuristics given in [11].
Each ‘rhythmic pattern function’, μr(φk), maps the posi-

tion of the bar pointer to the mean of a gamma prior distri-
bution on an intensity parameter λk . For some φk, the value
of μr(φk) combined with a constant varianceQλ, determines
the shape and rate parameters of the gamma distribution:

ar(φk) = μr(φk)
2/Qλ (5)

br(φk) = μr(φk)/Qλ (6)

For brevity, denote ak ≡ ar(φk), and bk ≡ br(φk). Then
conditional on φk and rk , the prior density over λk is:

p(λk|φk, rk) =

{
λak−1

k

b
ak
k

exp(−bkλ)

Γ(ak)
, λk ≥ 0

0, λk < 0
(7)

This combination of prior distributions provides robustness
against variation in the data. Examples of rhythmic pattern
functions are given in gure 1.
Denote by yk the number of onset events observed in the

kth non-overlapping frame of length Δ, centred at time tk.
The number yk is modelled as being distributed according to:

p(yk|λk) =
(λkΔ)

yk exp(−λkΔ)

yk!
(8)

Inference of the intensity λ is not required so it is inte-
grated out. This may be done analytically, yielding:

p(yk|φk, rk) =

∫ ∞

0

p(yk|λk)p(λk|φk, rk)dλk

=
bak

k Γ(ak + yk)

yk!Γ(ak)(bk +Δ)ak+yk
(9)
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Fig. 1. Examples of rhythmic pattern functions, each corresponding
to a different value of rk. Top - a bar of duplets in 4/4 meter, middle
- a bar of triplets in 4/4 meter, bottom - 2 against 3 polyrhythm. The
widths of the peaks model arpeggiation of chords and expressive
performance. Construction in terms of splines permits at regions
between peaks, corresponding to an onset event ‘noise oor’.

4. INFERENCE SCHEME

4.1. Resample-Move Particle Filter

An analytical expression for the posterior density p(x0:k|y1:k)
is not available in the case of this model due to the intractabil-
ity of the integral required to normalize the expression on the
right of equation 1. An approximate, sampling-based infer-
ence scheme is therefore adopted.
Sequential Monte Carlo methods yield sample-based ap-

proximations to a sequence of probability distributions. The
particle lter applies sequential importance sampling (SIS)
to the Bayesian ltering problem [12]. The algorithm works
by recursively extending and re-weighting N sampled state-
trajectories (‘particles’) in order to construct approximations
to the sequence of posterior densities:

p(x0), p(x0:1|y1), p(x0:2|y1:2), ..., p(x0:n|y1:n) (10)

Denoting by w
(i)
k the weight of the ith particle x

(i)
0:k at time

step k, the approximation to the posterior density is:

p(x0:k|y1:k) ≈
N∑

i=1

w
(i)
k δ

x
(i)
0:k

(x0:k) (11)

Fromwhich approximations to the ltering densities p(xk|y1:k)
may be obtained.
After several iterations of an SIS algorithm, the particle

system becomes degenerate - all but a small number of the
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particles have negligible weight. A resampling step is there-
fore employed, duplicating the heavily weighted particles and
discarding the particles with small weight.
It was observed that at early time steps, the ltering distri-

butions exhibit multiple modes corresponding to different bar
pointer trajectories (for example multiples of the true tempo)
which t the observed data. By using the Metropolis Hast-
ings (M-H) algorithm to apply Markov Chain Monte Carlo
(MCMC) moves to the particles after resampling, it is pos-
sible in the case of this model to ensure that all signi cant
modes of the posterior distribution are tracked. Technical de-
tails of resample-move schemes can be found in [13]. A mix-
ture of velocity and position shift M-H proposals are used
to ensure tempo diversity and to explore all phases of the
rhythm. MCMC moves can be carried out with exponen-
tially decreasing frequency, in order to reduce computational
requirements.
The particle ltering algorithm incorporating the MCMC

moves is given below.

for k = 0

• for i = 1 to N

– x
(i)
0 ∼ p(x0)

– w
(i)
0 = 1/N

for k = 1 to n

• for i = 1 to N

– x
(i)
k ∼ π(xk|x

(i)
0:k−1, y1:k)

– w
(i)
k ∝ w

(i)
k−1 ×

p(yk|x
(i)
k
)p(x

(i)
k
|x

(i)
k−1)

π(x
(i)
k
|x

(i)
0:k−1,y1:k)

• for i = 1 to N

– w
(i)
k =

w̃
(i)
kP

N
j=1 w̃

(j)
k

• for i = 1 to N

– resample and set w(i)
k = 1/N

– if yk > 0 apply velocity shift MCMC move
– else apply position shift MCMC move

For this model, the optimal choice of the importance den-
sity π(xk|x

(i)
0:k−1, y1:k) is intractable and so the prior density

p(xk|x
(i)
k−1) is used.

4.2. Monte-Carlo Smoothing

Backward simulation can be used to obtain approximate
smoothed samples from p(xl:m|y1:n), where l ≤ m ≤ n, us-
ing the weighted sample approximations to the ltering den-
sities, p(xk|y1:k) [14]. Smoothing is important in the case of
this model because it yields correct alignment of changes in
rhythm and corrects otherwise apparent deviations in tempo.
The algorithm for backwards simulation is given below.
• choose x̃n = x

(i)
n with probability w

(i)
n

• for k = n− 1 to 0
– for i = 1 toN , calculatew

(i)
k|k+1 ∝ w

(i)
k p(x̃k+1|x

(i)
k )

– choose x̃k = x
(i)
k with probability w

(i)
k|k+1

• x̃0:n is an approximate realization from p(x0:n|y1:n)

5. RESULTS

5.1. Tracking a Polyrhythm

The ‘2 against 3’ polyrhythm simultaneously exhibits peri-
odicity at two frequencies. This kind of rhythm could cause
problems for simple beat trackers which are liable to ‘lock-
on’ to one of these frequencies and ignore the other. A tempo-
modulated performance was simulated and the frame-wise
event counts - the observed data - can be seen at the top of
gure 2. The particle lter was run on this data with the sin-
gle rhythmic pattern function at the bottom of gure 1 and
N = 200 particles. An initial prior distribution, p(x0), was
set to be uniformover all (φ, φ̇) ∈ [0, 1)×[0.1, 2]. The follow-
ing parameter settings were used: Δ = 0.02s, σ2φ = 0.0005,
and Qλ = 10. Figure 2 shows maximum a-posteriori (MAP)
estimates for the bar-pointer position and tempo.
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Fig. 2. Filtered position and tempo estimates for a simulated
polyrhythm.

5.2. Recognizing a change in Rhythm

Figure 3 shows results using Monte Carlo smoothing for an
excerpt of a MIDI performance of ‘Michelle’ by the Beat-
les. The performance, by a professional pianist, was recorded
using a Yamaha Disklavier C3 Pro Grand Piano. The two
top-most rhythmic patterns in gure 1 were used and a uni-
form initial prior distributions were set on φk , φ̇k and rk ,
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with N = 600 particles. The following parameter settings
were used: Δ = 0.02s, σ2φ = 0.0001, pr = 0.5 andQλ = 10.
This section of ‘Michelle’ is potentially problematic for

tempo trackers because of the triplets, each of which by def-
inition has a duration of 2/3 quarter notes. A performance
of this excerpt could be wrongly interpreted as having a lo-
cal change in tempo in the second bar, when really the rate
of quarter notes remains constant; the bar of triplets is just a
change in rhythm. Further results will later be made available
on-line at http://www-sigproc.eng.cam.ac.uk/∼npw24/.
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Fig. 3. Results of smoothing by backward simulation.

6. CONCLUSIONS
A model of temporal characteristics of music has been pre-
sented, along with an approximate inference scheme which
yields ltered and smoothed estimates of tempo and rhythmic
pattern. The inference scheme is scalable because it avoids
handling large matrices. Demonstrations of the capabilities
of the system were presented for two pieces, one involving
a modulated polyrhythm and the other a switch in rhythm.
The results show that the system handles such temporal vari-
ations which could defeat simple tempo trackers. Future work
will address joint statistical modelling of high level temporal
structure and raw audio signals.

7. REFERENCES

[1] E. Scheirer, “Tempo and beat analysis of acoustic music
signals,” J. Acoust. Soc. Am., vol. 103, no. 1, 1998.

[2] W. A. Sethares, R. D. Morris, and J. C. Sethares, “Beat
tracking of musical performances using low-level audio
features,” IEEE Trans. Speech and Audio Processing,
vol. 13, no. 2, 2005.

[3] M. Goto and Y. Muraoka, “Music understanding at the
beat level - real-time beat tracking of audio signals,” in
Proc. of IJCAI-95Workshop on Computational Auditory
Scene Analysis, 1995.

[4] A. T. Cemgil and H. J. Kappen, “Monte carlo methods
for tempo tracking and rhythm quantization,” Journal of
Arti cial Intelligence Research, vol. 18, 2003.

[5] C. Raphael, “Automated rhythm transcription,” in Proc.
of the 2nd Ann. Int. Symp. on Music Info. Retrieval.,
2001.

[6] S. W. Hainsworth andM. D. Macleod, “Particle ltering
applied to musical tempo tracking,” EURASIP Journal
on Applied Signal Processing, vol. 2004, no. 15, 2004.

[7] H. Takeda, T. Nishimoto, and S. Sagayama, “Rhythm
and tempo recognition of music performance from a
probabilistic approach,” in Proc. of the 5th Ann. Int.
Symp. on Music Info. Retrieval, 2004.

[8] A. Klapuri, A. Eronen, and J. Astola, “Analysis of the
meter of acoustic musical signals,” IEEE Trans. Audio,
Speech, and Language Processing, vol. 14, no. 1, 2006.

[9] N. Whiteley, A.T. Cemgil, and S. Godsill, “Bayesian
modelling of temporal structure in musical audio,” in
Proc. of the 7th International Conference on Music In-
formation Retrieval, 2006.

[10] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury,
M. Davies, and M. B. Sandler, “A tutorial on onset de-
tection in music signals,” IEEE Transactions on Speech
and Audio Processing, vol. 13, no. 5, 2005.

[11] M. Goto, “An audio-based real-time beat tracking sys-
tem for music with or without drum-sounds,” Journal of
New Music Research, vol. 30, no. 2, 2001.

[12] A. Doucet, S. Godsill, and C. Andrieu, “On sequential
monte carlo sampling methods for bayesian ltering,”
Statistics and Computing, vol. 10, 2000.

[13] W.R. Gilks and C. Berzuini, “Following a moving target
- monte carlo inference for dynamic bayesian models,”
J. R. Statist. Soc. B, vol. 63, no. 1, 2001.

[14] S. Godsill A. Doucet and M. West, “Monte carlo
smoothing for nonlinear timeseries,” Journal of the
American Statistical Association, vol. 99, no. 465, 2004.

IV ­ 1324


