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ABSTRACT
This paper discusses model-based rhythm and tempo analy-

sis of music data in the MIDI format. The data is assumed

to be obtained from a module performing multi-pitch analy-

sis of music acoustic signals inside an automatic transcription

system. In performed music, observed note lengths and local

tempo fluctuate from the nominal note lengths and long-term

tempo. Applying the framework of continuous speech recog-

nition to rhythm recognition, we take a probabilistic top-down

approach on the joint estimation of rhythm and tempo from

the performed onset events in MIDI data. Short-term rhythm

patterns are extracted from existing music samples and form a

“rhythm vocabulary.” Local tempo is represented by a smooth

curve. The entire problem is formulated as an integrated opti-

mization problem to maximize a posterior probability, which

can be solved by an iterative algorithm which alternately esti-

mates rhythm and tempo. Evaluation of the algorithm through

various experiments is also presented.

Index Terms— Rhythm recognition, rhythm vocabulary,

rhythm N -gram model, piecewise polynomial tempo curve,

HMM, Viterbi search

1. INTRODUCTION
Automatic music transcription (AMT) has long been one of

the ultimate goals of music information processing. Just like

automatic speech recognition (ASR) which converts speech

signals to text, AMT converts either audio signals or MIDI

(Musical Instrument Digital Interface) data to music score.

A reconstructed music score would have many applications

such as music visualization, sheet music publishing, music in-

put to computers followed by automatic arrangements, or mu-

sic information retrieval both for music database construction

and query input. This paper discusses MIDI-to-score conver-

sion, which is to follow audio-to-MIDI conversion [1] inside

a newly integrated music transcription system [2]. Since pitch

is already given in the MIDI data, we focus on the joint esti-

mation of rhythm and tempo, which takes as input the tim-

ing information of the performed notes represented as MIDI

events, and outputs a symbolic rhythm expression for the cor-

responding musical score.

In music, each music note has a note value (nominal length

of the notes in the score) described in the source score. In per-

formed music, however, observed note-on and note-off MIDI

events deviate from the timings expected from the note val-

ues and over-all tempo. Thus, the inverse problem of going

back from the performed music to the source score is not a

trivial one, in the same way as the speech-to-text conversion

problem.

Rhythm recognition has been regarded in the past as the

integration of bottom-up processings: first, beat induction
finds the beat intervals and beat tracking tracks the beat on-

sets, usually in real time. Then, for each beat, quantiza-
tion is performed to convert the time length of each note into

note values, and meter analysis is performed to find the meter

structure and estimate the time signature.? Each of these tasks

was studied from rule-based approaches [3, 4], and some of

/Rtkdthe tasksthem were combined to extract automatically

beat and meter from musical performances [5]. Recently,

quantization and beat tracking were also integrated in prob-

abilistic top-down approaches [6, 7], where time develoep-

ment of onset times and tempo were probabilistically mod-

eled. These methods assumed that time signature was given a
priori, while tempo and onset times were modeled in the two

consecutive notes.A MAP (maximum a posteriori probabil-

ity) estimation approach was also introduced, relying on ap-

proximation of integral by random sampling method [7] and

dynamic programming (DP) [6]. While these tasks were per-

formed on onset timing information, some of them can be pre-

ceded by audio preprocessing including onset detection and

frequency analysis [5, 8], even though onset detection error is

inevitable.

On the other hand, since 1999 we followed a top-down

HMM-based approach [9, 10] motivated by the ASR-like idea

that rhythm should be ‘recognized’ as a pattern, without rely-

ing on quantization and tracking, and modeled using vocab-

ulary and grammar. We also introduced the empirical con-

straint that tempo usually changes smoothly with a continuous

function in the same way as it is dealt with in music perfor-

mance analysis [11, 12, 13]. This paper presents probabilis-

tic models of rhythm vocabulary and note-length fluctuations

which are combined together to find the most likely rhythm

and tempo in a similar manner as is done in continuous speech

recognition (CSR) [14] where language and acoustic models

work cooperatively. One of the points which distinguishes our
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Fig. 1. Music transcription is essentially an ill-posed prob-
lem: while rhythm (a) is intended with the tempo slowing
down, the resulted note onset timings can be interpreted both
as (b) assuming a constant tempo, and even as (c) allowing
rapid changes in tempo.

work from previous efforts is the introduction of a grammar
model for rhythm. The use of HMMs including tempo as a

latent variable also differentiates the estimation algorithm of

the rhythm recognition from that of CSR.

2. MODELING RHYTHM AND TEMPO
2.1. Addressing the problem
In music performances, the observed note length x [secs] is

basically the nominal length (‘note value’) q [beats] multi-

plied by the tempo r [seconds per beat, in this paper] with

additional deviations caused by artistic intentions and/or in-

sufficient playing skills. Therefore,music transcription is an

ill-posed inverse problem, which consists into determining

both rhythm and tempo simultaneously, i.e. to reconstruct

the original (or intended) score, and has no unique solution in

general as seen in Fig. 1.

However, humans listening to the performed music piece

shown in Fig. 1 generally prefer score (a) rather than (b) and

(c). This preference can be explained by two hypotheses: (1)

humans recognize a rhythm as following a simple template

from a collection of common rhythms, allowing small de-

viations of note onset timings, and (2) tempo changes only

smoothly within short periods. These hypotheses are consid-

ered to be commonly accepted from the viewpoint of the na-

ture of music performances.

2.2. Modeling note values
Note values are discrete quantities rational to beat, e.g. a

whole note is 4 beats assuming the quarter note as the beat

unit. For a monophonic music piece consisting of N notes, its

rhythm score can be expressed as Q = {q1, · · · , qN}, where

qn [beats] represents the note value of the n-th note.

We define here the concepts of “rhythm words” and “rhythm

vocabularies”. A note value sequence of relatively short length

is considered as a rhythm word wj , and the set of all these

rhythm words constitutes a rhythm vocabulary, just like a word

vocabulary in CSR. The rhythm score Q is then considered as

a sequence of rhythm words and is associated with a prior
probability P (Q) representing how likely the rhythm Q is to

appear in the source score. This introduces a stochastic gram-

mar on the rhythm.

As in CSR, P (Q) can be approximated by an N -gram

probability on the rhythm words, which are considered as

short range rhythm pattern units. If meters are chosen as sepa-

rators between rhythm words, estimation of the rhythm words
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Fig. 2. Polyphonic music transcription: MIDI data is con-
verted to a single stream of IOIs, recognized as a sequence of
likely note onsets and finally converted to score using pitch
information.
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Fig. 3. Modeling rhythm score with Markov transition of beat
position.

also works as meter analysis since bar line positions are then

obtained as their boundaries, and time signature is obtained

from the most likely rhythm words. The rhythm vocabulary

and its N -gram grammar can be trained using original scores

of composed music samples. The problem of stochastic train-

ing with a limited amount of data can be discussed in the same

way as for language modeling in speech recognition with the

out-of-vocabulary problem.

Estimation of polyphonic rhythm can be accomplished in

the same way as in the monophonic case by projecting all

observed note onsets onto a one-dimensional time axis and by

using an inter-voice rhythm vocabulary to recognize the note

values in the one-dimensional rhythm score from which the

source score is estimated using pitch information in the MIDI

data as shown in the right of Fig. 2. The rhythm vocabulary

of polyphonic music can be trained in the same way as in the

monophonic case on a set of polyphonic music scores.

The beat position of the n-th note in a score is represented

by the cumulative note values sn =
∑n−1

i=1 qi. Regarding the

score positions of all the notes in a rhythm score as nodes of

a directed graph, a rhythm score can be modeled by a state

transition network such as shown in Fig. 3. Chords can be

modeled as self-transitions at a node in the same way as in

previous works[6, 15].

2.3. Modeling tempo with a tempo curve
We denote by R(s) [sec/beat] the tempo (meaning time length

per beat, in this paper) played at beat position s in the score.

Observed instantaneous tempo (observed note length divided

by its note value) at position s is modeled as a sample of

R(s) including deviations (statistical errors) caused by musi-

cal intentions, insufficient playing skills, etc. Rapid or sudden

changes in tempo can be modeled by switching tempo curves,

where tempo curves are not continuous at the points of these

tempo changes.

In the following discussion, we use segmental polynomi-
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als in log-scaled tempo to model the tempo curves. We define

in each segment log R(k)(s) =
∑D

d=0 a
(k)
d sd, where k is the

segment index, a
(k)
d denotes the d-th coefficient of the poly-

nomial in the k-th segment and D the maximal polynomial

order.

2.4. Note length and HMM
Note lengths of polyphonic music can be obtained as inter-

onset intervals (IOIs) as shown in Fig. 2, which correspond

to the observation of rhythm score.

As already stated, the note length xn of the n-th note

played at beat position sn is expected to be the note value

qn multiplied by the tempo R(sn) plus a deviation. Since

the deviation of the note duration is expected to be roughly

proportional to the note value, we assume that the distribu-

tion the logarithmic note length log x follows a normal dis-

tribution with mean log(qn · R(sn)) and variance σ2. As the

probabilistic distance between x and qn ·R(sn) is given in the

logarithmic scale, it can also be understood as the equivalent

distance for the tempo by noticing that

log xn − log(qn · R(sn)) = log rn − log R(sn), (1)

where rn is the instantaneous tempo of the n-th note defined

by xnsecs = rnsecs/beat · qnbeats.
Note that we are using the same probability distribution

P (x|q,R(s)) for both IOI and tempo, while previous works

introduced a probability for each of the IOI and the tempo.

Although all notes in a chord are supposed to be played

simultaneously, their onset timings are not exactly the same

in real performances. We assume that IOIs between notes in

a chord follow a single-sided Gaussian distribution.

Combining together the beat position transition Markov

model and the probabilistic model of the IOIs, the process of

generating IOIs from a sequence of rhythm words is modeled

using HMMs which expressthe probability P (X|Q,R) of

observing IOIs X such that rhythm Q in the score is played

at tempo R.

2.5. Probability of generating a music performance
Combining further these models, the probability that the rhythm

score Q produces a sequence of IOIs X with tempo curve

R(s) is given by P (X|Q, R)P (Q)P (R). This can be un-

derstood as a stochastic process which consists in emitting

IOIs at the transitions between the states (beat positions) of an

HMM network where the HMMs (rhythm words) are proba-

bilistically connected through an N -gram grammar.

3. JOINT ESTIMATION OF RHYTHM AND TEMPO
3.1. Maximum a posteriori probability estimation
Joint estimation of note values and tempo can be formulated

as an estimation of the note values sequence Q and tempo

curve R(s) from the IOI sequence X = {x1, x2, · · · , xN} of

a real performance. Assuming that Q and R are independent,

the posterior probability can be written as

P (Q, R|X) ∝ P (X|Q,R)P (Q)P (R) (2)

according to Bayes’ rule. Though it is not a trivial problem to

find the combination of Q and R that maximizes Eq. 2, iterat-

ing the alternate estimation of the note value sequence Q and

the tempo R monotonically increases the posterior probabil-

ity, which thus converges to a (locally) optimal solution with

regards to both rhythm and tempo. The optimal solution of

the MAP estimation can be obtained by using an appropriate

initial condition.

3.2. Algorithm for rhythm recognition
With the tempo curve R(s) fixed, the most likely rhythm Q
for given IOI X can be estimated. Viewed from the analogy

between speech recognition and rhythm recognition, this is

formulated as a best path-search problem in a state transition

network consisting of HMMs. An efficient search algorithm

based on one-pass DP (e.g. time synchronous Viterbi search)

can be used for this problem.

3.3. Algorithm for tempo curve estimation
On the other hand, with the note value sequence Q fixed, the

posterior probability can be monotonically increased by re-

estimating the tempo curve R(s). Maximizing the logarith-

mic posterior probability of the tempo curve is equivalent to

the least squares estimation, assuming that no a priori knowl-

edge P (R) is given, i.e. that P (R) is uniform. Fitting seg-

mental polynomials can also be done using the segmental k-

means method[16] by iteratively and monotonically increas-

ing the posterior probability.

3.4. Procedure to jointly estimate the rhythm and tempo
Combining rhythm recognition and tempo estimation discussed

above, the joint estimation of rhythm and tempo can be ac-

complished as follows:

1. Extract IOIs from MIDI events in the given performed

music.

2. Set initial condition of tempo curve R(s). (e.g. con-

stant tempo Rc when a priori knowledge is not avail-

able)

3. Rhythm recognition: Assuming the tempo curve as

R(s), find Q that maximizes the posterior probability

for the given X by using the Viterbi algorithm, per-

forming an optimal path-search in the rhythm vocabu-

lary HMMs.

4. Tempo estimation: Fixing the estimated Q, re-estimate

the tempo curve R(s) that maximizes the posterior prob-

ability for the instantaneous tempo X/R using the seg-

mental k-means algorithm.

5. Convergence test: Terminate if the increase of the pos-

terior probability is less than a preset threshold. Other-

wise, go back to (3).

This iterative algorithm is substantially the process of mini-

mizing the probabilistic distance between xn and qn · R(sn)
given by p(xn|qn, R(sn)) within the rhythm vocabulary and

tempo curve constraints.
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Fig. 4. Estimated segmental polynomial tempo curve.

4. EXPERIMENTAL EVALUATION

4.1. Evaluation of the tempo curve estimation
First, we conducted a simulated test of the algorithm to esti-

mate the tempo curve from MIDI data1 generated from ar-

tificially given tempo curves so that the played MIDI data

sounded well like a human performance. Setting the initial

constant tempo to 120 bpm and using a bigram model rhythm

vocabulary trained with 133 pieces, 4 second-order segmental

polynomials were iteratively fit to the observed instantaneous

tempos to log-normal distribution with variance of 0.1 until

the convergence test cleared a threshold of 0.0001. As shown

in Fig. 4, the estimated tempo curve exactly fits the original

tempo curve after 2 iterations.

4.2. Evaluation of the note values estimation
Next, to confirm the performance for transcription, we evalu-

ated the rhythm recognition accuracy of the proposed method

over 37 piano pieces2 played by 2 piano players with an elec-

tronic piano and recorded in the MIDI format. Two kinds of

rhythm vocabularies (‘open’ and ‘closed’) and their bigram

models were trained using 100 piano pieces (distinct from

the pieces used for testing) for the open vocabulary and 137

pieces for the closed vocabulary (including the pieces used

for testing, which corresponds to assuming that there is no

out-of-vocabulary words), adding to the open vocabulary the

37 pieces used in the evaluation. The closed model was pre-

pared to evaluate the rhythm recognition performance under

a condition free from out-of-vocabulary rhythm words.

Note values and chord clustering of the estimated rhythm

score were compared with those of the original scores. A

rhythm accuracy of 85.5% was attained with the ‘closed’ vo-

cabulary, 81.9% with the ‘open’ vocabulary. Some errors

occurred when note values were misrecognized in parts of

a piece where the same note value is repeated several times

(e.g. a sequence of triplets and that of eighth notes), or when

tempo curve estimation fell into local optimums.

4.3. Reconstructing the score
Combining the pitch information of the input MIDI data and

the estimated rhythm score, a music score can be reconstructed.

The key signature, unit beat length and accidentals are yet to

be determined automatically, and the key was given manu-

ally while the beat length and accidentals were derived by an

18 bars from Bagatelle “Für Elise,” WoO. 59 by L. van Beethoven.
2Etudes, Op. 100 by F. Burgmüller, Kinderszenen, Op. 15 by R. Schu-

mann, and 4 Mazurkas by F. Chopin.

Fig. 5. An example of reconstructed score from a piano per-
formance of “Träumerei” by R. Schumann, Op. 15-7.

�ad hoc method this time. Using a closed vocabulary for the

rhythm words, we obtained a score shown in Fig. 5 that can

be considered essentially the same as the original score.

5. CONCLUSION
This paper discussed the joint estimation of rhythm and tempo

of the MIDI data of a human performed music piece. Future

work includes cross-voice rhythm modeling for voice descrip-

tion, and integration of pitch aspects including key finding

and chord analysis toward automatic transcription.
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