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ABSTRACT

Despite continued attention toward the problem of automatic beat
detection in musical audio, the issue of how to evaluate beat track-
ing systems remains pertinent and controversial. As yet no consis-
tent evaluation metric has been adopted by the research community.
To this aim, we propose a new method for beat tracking evaluation
by measuring beat accuracy in terms of the entropy of a beat error
histogram. We demonstrate the ability of our approach to address
several shortcomings of existing methods.

Index Terms— music, information retrieval, entropy

1. INTRODUCTION

The task of beat tracking is well known among researchers in music
information retrieval. The common and simple analogy is that of
foot-tapping in time to music. It is often reported that this seemingly
trivial task for humans remains a significant challenge for computer
systems [1]. The need for evaluation is simple; without it, we have
no means to distinguish between good and bad cases, nor any way to
gauge the performance of different beat tracking systems.

Human foot-tapping, although regarded as intuitive, is not always
consistent [2]. Inconsistency in tapping can be described in several
ways: most commonly, this refers to the metrical level at which the
beats are tapped, e.g. for a given piece, some people will tap twice
as fast as others; tapping may also occur at the same tempo, but in
anti-phase i.e. on the off-beat; and thirdly, the localisation of the
beats may not be precise, where some beats may be deemed to be
ahead or behind the beat. Given the inherent ambiguity in the task, it
is not surprising to discover that beat tracking algorithms are equally
inconsistent in their behaviour. Despite the apparent simplicity of
beat tracking, the task of measuring beat accuracy is complex and as
yet no agreed upon method currently exists.

A straightforward form of beat tracking evaluation is the subjective
listening test. Given a piece of music and a sequence of estimated
beat locations, the beats can be rendered as percussive clicks which
are then auditioned by human subjects who determine the accuracy
of the tracking. Informally, this may be little more than a response to
the query: ‘do the beats sound in time?’. Dannenberg [3] performs
subjective evaluation and defines correct tapping to be at twice or
half the perceived metrical level, or on the off-beat. He also cites a
specific case of incorrect tapping, known as fempo drift, where the
beats are tapped at a slightly incorrect tempo and drift in and out of
phase, which he labels as a perceptually disturbing error.

It is hard to dispute the validity of using human judgement to de-
termine the accuracy of a perceptual construct such as beat location.
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However, subjective testing is time consuming, and this inherently
limits the size of the test database upon which a beat tracker can
be analysed. The alternative to subjective evaluation is pursue an
objective approach. For each test example, this requires the anno-
tation of ground truth beat locations against which the beat tracker
output can be compared. For real musical performances (which are
not performed in perfectly quantised time) hand annotation of beat
locations is an extremely arduous task [4], which requires continued
re-adjustment of beat locations often using audio and visual cues to
obtain perceptually accurate data.

Given a ground truth sequence of beat annotations, the majority
of existing evaluation methods define an allowance window around
each annotation, and deem an individual beat to be correct if it occurs
within this window. The thresholds defining the allowance window
can either be fixed in time, e.g. 70ms [1] or tempo-dependent, e.g.
17.5% of the current inter-annotation-interval [5, 6]. Allowances can
be made for the continuity of correct beats [5], or the beats may be
treated as isolated events [1, 7]. However, the size of the allowance
window is typically arbitrary. Depending on the thresholds used, the
relative performance between competing algorithms can change [8].
Therefore a single window may be insufficient to obtain a complete
picture of beat tracking performance.

To contend with ambiguity in tapping, either multiple phases and
metrical levels of annotation are required, or the annotations must be
re-sampled to each particular case. Inherently, this requires know-
ing the appropriate allowed metrical levels. Merely assuming that
twice or half the rate will be acceptable may not generalise to all
music, particularly those which do not have a 4/4 time-signature.
Multiple passes over the annotation data can lead to multiple mea-
sures of accuracy, which require more interpretation than a single,
all-encompassing accuracy value. The challenge is to meaningfully
combine the different dimensions of metrical level, phase and local-
isation onto one single dimension of global beat accuracy.

In contrast to existing evaluation methods which model beat accu-
racy using allowance windows, we extract the timing error between
beats and annotations. By analysing the error between all beats and
annotations over annotation-centred beat-long windows we can anal-
yse beat error independent of metrical level. We form a beat er-
ror histogram, where peaks represent implicit dependency between
beats and annotations. We then define a measure of beat accuracy in
terms of the entropy of the error distribution. We compare the prop-
erties between several evaluation methods, and demonstrate how our
approach can address some of the shortcomings of existing methods.

The remainder of this paper is structured as follows. In section 2
we describe the approach for measuring beat tracking accuracy, fol-
lowed in section 3 with some preliminary results and conclusions in
section 4.
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Fig. 1. Extraction of beat error ¢ from beats -, and annotations a;

2. APPROACH

In our objective approach to beat tracking evaluation we compare a
sequence of extracted beat times -y to a sequence of ground truth beat
annotations a. The basis of our method is the generation of a beat er-
ror histogram, which we can use to infer the relationship between the
beats and the annotations. We can consider two such example his-
tograms: i) a Dirac-delta distribution with an impulse at zero error,
from which we should infer the beats were identical to the annota-
tions; and ii) a uniform distribution, from which we should infer that
the beats are entirely unrelated to the annotations. These examples
merely represent the theoretical best and worst cases. For real beat
tracking data, we can expect some form of distribution between these
two extrema.

2.1. Beat error

To obtain the beat error data required to populate a histogram, we
partition the input signal into beat length windows, centred on each
annotation a;. Within each annotation-centred window we could ex-
tract the time between the closest beat -y, and a;, however this would
limit our analysis to the annotated metrical level [8]. Proceeding in
this manner would also leave our approach blind to the trivial case
of over-detection, where beats are placed at all time instants, so that
for every annotation, some beat will exist with zero error.

To prevent the problem of over-detection and maintain analysis over
multiple metrical levels we find the time between all beats -, that
occur within each annotation window.

Ya = Vo U«j—A;—l < <aj +A; 1

To remove any dependency on the tempo of the input, we normalise
the beat error (7, q), for the ¢** beat in the 5" annotation window,
into the range [-0.5,0.5] beats by dividing the error by half the width
of the annotation window, as shown in fig. 1
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where A%, = 2=2=1 and A} = 2+1=% represent the bound-
aries of the beat length segment around a ;. Combining all annotation
windows provides a normalised error sequence (|, representing the
error of the beats given the annotations.

In addition to the over-detection case, there is a similar issue re-
lated to under-detection. If very few beats are compared to a se-
quence of annotations, then in many instances there will no beats 7,
within each annotation window. To assign a cost to under-detection
we adopt a two-way mismatch (TWM) procedure to extracting the
beat error. Just as we derived (,|,, We now repeat the process and

compare the annotations to the beats to obtain (,|,. The case of
under-detection of beats to annotations is now transformed to over
detection of annotations to beats. We describe how to contend with
two error sequences in the following section.

2.2. Beat error histogram

An intuitive approach to extracting a measure of beat tracking accu-
racy from a beat error sequence ¢ would be to find the variance of
the data. For accurate beat tracking cases we should expect low vari-
ance, with the converse true for inaccurate, (uniformly) distributed
beats. However, should the beats occur at twice the annotated met-
rical level, then ¢,|,, will have approximately 50% of errors close
to zero, with the remaining 50% split between errors near to 0.5 and
-0.5 of a beat. For a multi-modal distribution of this type, the vari-
ance will not adequately reflect how this is a perceptually acceptable
form of tapping in time to music.

A more meaningful way to extract performance from a histogram of
beat error, is to look for a measure of peakiness, where the peaks in
the histogram represent some implicit dependence between beats and
annotations. To this aim we find the entropy of the error distribution,
under the condition that the bin heights, x, for a K bin histogram,
sum to unity,

H=- Zle zr log(zk) Zle xr = 1. 3)
The entropy, H, will be bounded between O for the delta case and
log(K) for the uniform case. Because we extract H directly from
the bin heights of the histogram, we must take care with the num-
ber of bins used. Too few, and we will over-estimate H; too many
and we will under-estimate it. To permit the possible observation
of a uniform distribution (our defined worst case), for an N-length
sequence of annotations we require K < N;
To select between the two error sequences (|, and (4|, we find the
sequence with the highest entropy (i.e. worst performance),

Hmax = maX(Hw\a,Ha\'y) (4)

where H. |, is the entropy of z given y.

2.3. Beat accuracy

The extracted entropy Hmax, While sufficient to distinguish between
good and bad tracking performance, is not bounded over the 0-100%
scale, which makes comparison with existing evaluation methods
difficult. However, for any Hmax there will be an equivalent en-
tropy rectangular histogram (EERH), with p bins y,, of height 1/p.
By defining the total number of bins P = 100, and allowing p to take
non-integer values, we can transform the entropy on to the desired
0-100% scale.

Using eqn. (3) we can show that an EERH of width p will have
entropy log(p). To equate Hmax to log(p), under the condition K #
P, we scale Hrax to be bounded between 0 and log(P),

IOg(p) = Hmax — IOg(K) + IOg(P) )

Rearranging for p, we find the more delta-like the EERH, the greater
the beat accuracy, such that

acc = (1 — %) * 100%. (6)

In beat tracking evaluation, the aim is often to define beat accuracy
over a large test database, e.g. [6, 8]. For each file in a test database
we can define overall beat accuracy as the mean of the individual
accuracies of each file, which we label p 7. Because the beat error
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Fig. 2. Beat error histograms: (left) beat tracker and (right) human
tapping performance.

for all files will be normalised within the [-0.5,0.5] range, we can
form a single, global beat error histogram, which is equivalent to the
bin-wise sum of the individual beat error histograms, such that the
global histogram bins X = an{:l Th,m, Where Ty ., is the k™"
bin for the m‘" file. Given this global histogram, we can find the
global entropy Hmax and global EERH to define a second measure
of beat accuracy, g. The principal difference between p g and gg
is that for p g all files are considered equal, whereas for g all beats
are of equal importance.

3. COMPARISON OF EVALUATION METHODS

To investigate the properties of our proposed entropy based metric,
we evaluate two beat tracking methods: our non-causal beat tracker
[8] and a human tapping performance, over a 222 excerpt beat anno-
tated database containing approximately 20,000 beats [4]. For fur-
ther details on the test database and beat tracker see [8].

Before extracting any quantitative data, we can inspect the beat error
histograms to infer information about the beat tracking performance.
Fig. 2 shows the global beat error histograms for the beat tracking
system and the human tapper. The most immediate observation is
that the histograms have different shapes. The beat tracker error his-
togram has a tight central peak (at zero error) with two further peaks
at + 0.5 beats. The histogram of the human tapper on the other hand,
has a wider central peak with much lower outer peaks. A plausi-
ble explanation for the different histogram shapes would be that the
human tapper was proficient in finding the annotated metrical level
(i.e. tapped at the correct tempo), but that the taps were poorly lo-
calised to the annotations. The beat tracker could be considered less
consistent in metrical level selection but with more accurate local-
isation within the specified level. The beat tracker histogram also
has a higher “noise floor”, suggesting a greater proportion of cases
with uniform-like error distributions, where the beats were poorly
tracked.

3.1. Overall Performance Comparison

To compare evaluation methods we present results obtained from
four existing evaluation methods and our approach over the same
data, these are: i) CML - the continuity based method from [6, 8]
which extracts the ratio of the longest continuously correct beat se-
quence to the length of the input, where beats must occur within a
+ 17.5% allowance window and be at the correct metrical level; ii)
AML - which uses an identical threshold, but defines accuracy as the

[ Method || Beat tracker | Human tapper |

CML 548 5238
AML 78.8 87.7
Dix 61.5 77.2
Cem 55.5 61.4
[ 415 53.6
gH 68.5 69.7

Table 1. Comparison of results for beat tracker and human tap-
ping performance. Evaluation methods are CML: continuity at cor-
rect metrical level, AML: no continuity at allowed metrical levels,
Dix: Dixon approach, Cem: Cemgil et al approach, gr: Accuracy
over global error histogram, p7r: Mean accuracy over individual his-
tograms. All accuracy values are in %.

ratio of the sum of the lengths of continuous segments to the length
of the input, and additionally allows for tapping on the off-beat and at
twice or half the annotated metrical level; iii) Dix - Dixon’s method
[1] finds the ratio of ‘hits’ to ‘hits’ plus ‘false positives’ plus ‘false
negatives’, where ‘hits’ occur with 70ms of each annotation, ‘false
negatives’ are the number of unmatched annotations and ‘false posi-
tives’ are the number of beats outside allowance windows; iv) Cem -
the method of Cemgil et al [7] measures beat accuracy using the time
between each annotation and the nearest estimated beat location on
a Gaussian error function with 40ms standard deviation. To contend
with false positives, the sum of the error across all annotations is di-
vided by the mean of the number of annotations and beats. Beats far
from annotations (false negatives), will be assigned an accuracy of
0% from the Gaussian error function. Results for each approach and
our two entropy methods are shown in Table 1.

We can make several observations from the results presented. First,
the accuracy values are quite widely spread over the 0-100% range,
and furthermore that the relative ordering between the beat tracker
and human is not consistent either (e.g. CML vs AML). There is
also a significant difference between gy and p i, which is more pro-
nounced for the beat tracker than for the human tapping data. From
this we infer that the human tapping global histogram is a truer re-
flection of the individual error histograms, but that the individual
error histograms for the beat tracker are more varied in shape and
contribute to a more uniform (higher entropy) global histogram.

3.2. Distribution of performance by file

To further investigate the differences between the existing evalua-
tion methods, histograms of beat accuracy across the test database
are shown for each method in fig. 3. Here the differences between
the methods becomes more clear. CML is close to making a binary
decision between 0 and 100%, which is largely determined by the
metrical level at which the tapping occurs. AML confirms that many
of the 0% cases from CML are within the allowance threshold but
merely at a different metrical level. For CML and AML once all the
beats occur within the defined allowance window there is no further
means to distinguish performance. The Dix and Cem methods are
more evenly spread over the 0-100% range, but analysis is limited
in both cases to the annotated metrical level and under the condition
that the beats are in phase (i.e. not tapped on the off-beat). All the
off-beat cases are assigned 0% accuracy.

An interesting feature of our entropy based approach is that no cases
are assigned 0% accuracy nor any with 100%. Using even relatively
few histogram bins, in this case 40, to obtain 100% would require all
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Fig. 3. Histograms of beat accuracy scores for the beat tracker over
each of the 222 excerpts from the annotated database [4]. CML:
continuity required at correct metrical level, AML: continuity not re-
quired at allowed metrical levels, Dix: Dixon approach, Cem Cemgil
et al approach, Entropy method. Note that the vertical scales for
CML and AML differ from Dix, Cem and the (x ) Entropy method.

beats to be within £ 1.25% of the annotations, which for a piece at
approximately 120 bpm, (with beat period 500ms) would be equiv-
alent to a 12.5ms window. This is considerably tighter than the £
17.5% allowance window used in CML and AML, which under sim-
ilar conditions would be 135ms wide. The narrow histogram bins
therefore allow for the distinction between what for threshold based
approaches, are indistinguishable 100% cases.

Just as 100% is an unrealistic outcome for our approach, the same is
true of 0% accuracy, i.e. a perfectly uniform beat error histogram.
For the other approaches, 0% can occur when beats consistently fall
outside of the allowance windows, or, for all except AML, when beats
are tapped on the off-beat. Due to the shift-invariant nature of the en-
tropy calculation, (eqn. (3)), the off-beat, or indeed any shift, will be
considered just as accurate as the on-beat. However, this only applies
to the p g value. Since the gi accuracy is derived from a histogram
of beat error over many musical files, different locations of signif-
icant peaks will, when averaged, lead to a flatter global histogram
with higher entropy. Similarly, tapping at a different metrical level
to that of the annotations will lead to more peaks in the beat error
histogram, and therefore lower overall accuracy.

A particular special case, known as tempo drift, highlights one fur-
ther property of our method, with which threshold based approaches
can only partially contend. It arises when the beats are tapped at
a slightly incorrect tempo, and continually drift between the on and
off-beat. For threshold based approaches, these beats often fall within
the allowance windows and are then considered correct, even though
this is regarded as a perceptually disturbing error [3]. In our method,
the drifting of beats is represented by a uniform-like beat error dis-
tribution, with high entropy and therefore low beat accuracy.

The underlying feature of our entropy based approach is that it re-
wards a consistent relationship between beats and annotations, at a
close metrical level, rather than the explicit proximity to ground truth
locations as with threshold based methods.

4. CONCLUSIONS

We have explored a new approach for the evaluation of beat tracking
systems, which measures beat accuracy in terms of the entropy of
a beat error histogram. Our method is able to analyse all metrical
levels simultaneously and is able overcome some of the limitations
of existing threshold based approaches, including a rejection of the
perceptually disturbing tempo drift case.

The intuitive justification for the use of thresholds in beat evaluation
is that beats falling within defined allowance windows are judged to
be perceptually in time, where as those outside are not. While it is
possible to manually construct counter-examples to break threshold
based evaluation methods, similar examples can be created to give
very high accuracy for our approach, where the beats might not have
any relevance to the musical input (e.g. at a precise offset of -20% of
a beat). It is important to recognise that beats are perceived events,
which may or may not correspond to any actual event in the audio.
Therefore in the evaluation of beat tracking systems, we should aim
for a metric which matches human judgement. As part of our future
work we intend to undertake listening tests to examine the perceptual
validity of the existing evaluation methods.
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