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ABSTRACT

An adaptive oscillator is a system that can lock onto a time-
varying input signal, synchronizing its output to both the fre-
quency and phase of the input. A wavetable oscillator gen-
erates a periodic output by indexing into a lookup table that
stores a single period of the waveform. An adaptive wavetable
oscillator (AWO) combines these two ideas in a technique
which separates the periodic output waveform from the pa-
rameters that control the adaptation of the frequency and phase
of the waveform. The key issues in the design of AWOs are:
the kind of oscillator to use, the class of admissible inputs,
the shape of the wavetable, the control parameters, and the
adaptive algorithm that adjusts the parameters. Wavetable os-
cillators can be applied to track the beat in MIDI signals, or,
after an appropriate psycho-acoustical data reduction, to the
tracking of audio signals. This paper examines these issues
through analysis and simulation, focusing on conditions that
achieve the desired entrainment between output and input.
Sound examples demonstrate the application to beat tracking.

Index Terms— adaptive systems, nonlinear oscillators,
table lookup, oscillator stability

1. INTRODUCTION

Adaptive oscillators attempt to respond to external events by
adjusting the frequency and phase of oscillation to achieve
entrainment. They must generate a periodic waveform, ad-
mit an input, be capable of synchronizing to the period and
phase of the input, and be robust to noisy periods, missing
events, and unexpected events. In the beat-tracking problem,
a locally generated waveform attempts to match phase and
period to follow the foot-tapping “beat” of a musical passage
([71, [13]) which may originate as a MIDI signal or may be
derived from an audio input. In typical oscillators, such as
those of Van der Pol [15] and Fitzhugh-Nagumo [5], the state
of the oscillator is inextricably tied to the period of oscilla-
tion; thus the “shape” of the output waveform changes with
frequency. Adaptive wavetable oscillators, on the other hand,
separate the detailed shape of the periodic waveform from the
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control signals that specify the phase and frequency of the os-
cillation. This separation allows standard techniques from the
analysis of adaptive filters to be applied.

A number of researchers have investigated the applica-
tion of oscillators to the beat tracking problem. These include
work by Eck [4], McAuley [9], and Large and Kolen [7], each
of whom apply particular osillator structures to the beat track-
ing problem. These draw from the tradition of Povel’s [12]
work which posits rhythmic activities as the result of an en-
trainment between an internally generated clock (the oscilla-
tor) and external events. Perhaps the most successful of these
systems is Toiviainen’s real time MIDI beat follower [14].

This paper introduces AWOs in Sect. 2 and then exam-
ines the behavior of the oscillators as the parameters adapt to
follow various input signals in Sect. 3. The adaptation is an-
alyzed in a variety of settings and the optimum (equilibrium)
points of the algorithm are shown graphically and derived an-
alytically. Examples in Sect. 4 demonstrate that the oscillators
can achieve entrainment in a musical environment.

2. ADAPTIVE WAVETABLE OSCILLATORS

A wavetable oscillator consists of an array w containing N
stored values of a waveform. The output of the oscillator at
time k is

o[k] = w((s[k] + 8) mod N)
where mod N is the remainder after division by NV and where
the indices into w are given by

s[k] = (s[k — 1]+ «) mod N. 1

The index is initialized as s[0] = (. The parameter o speci-
fies the frequency of the oscillation while 3 defines the phase.
The oscillator can be made adaptive by adjusting the parame-
ters to align the oscillator with an external input. This can be
accomplished in several ways. Suppose that the input to the
oscillator is 7[k]. One possibility is to use a correlation-style
cost function

J(B) = LPF{i[klo[k]} @)

which parallels the cost function used in a standard PLL [6].
The /3 that maximizes ./ provides the best fit between the input
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and the oscillator. It can be adapted using a gradient descent
strategy

dJ
E+1] = k — 3
Alk+1] = Bl +n &)
oo dw
= B[k] + pLPF < i[k] Il .
B lp=pi]
Since w is defined by a table of values, % is another table,

the numerical derivative of w. Several candidate wavetables
and their derivatives are shown in Fig. 1.

Large- Van der
Kolen Pol

Fig. 1. Five common wavetables and their derivatives. The
cosine wavetable is used in the PLL. The Gaussian shape
is shifted so that the largest value occurs at the start of the
table. The wavetable for the Large-Kolen oscillator is de-
fined by 1 + tanh(~ cos(2mft) — 1). The Van der Pol and

Fitzhugh-Nagumo waveshapes are defined using waveforms
culled from numerical simulations.
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The frequency parameter can also be adapted in order to
“learn” the frequency of the input and to continue at the new
frequency even if the input stops. Perhaps the simplest tech-
nique is to use a gradient strategy that maximizes J(a) =
LPF{i[k]o[k]}. This is:

dJ
alk] + ﬂadf 4)
«
dw d
alk] + paLPF{ i[k] S= 2= }.
ds do a=alk]

alk+1] =

Since s[k] is defined by the recursion (1), the derivative with
respect to o cannot be expressed exactly. Nonetheless, when
the stepsizes are small, it can be approximated by unity. Be-
cause the frequency parameter is more sensitive, its stepsize
lio 18 usually chosen to be considerable smaller than the step-
size used to adapt the phase.

In adapting the §’s and a’s of the AWO, other cost func-
tions may be used. Minimizing J;s = LPF{(i[k] — o[k])"}
leads to an update that optimizes a least-squares criterion while
maximizing Je = LPF{(i[k]o[k])"} leads to a method that
parallels the “Costas loop” [6].

3. BEHAVIOR OF THE ADAPTATION

When attempting to locate the position of a train of spikes in

time, oscillators that use pulses (such as Large and Kolen’s
or the Gaussian) are intuitively plausible. The pulse can be
thought of as providing a window of time over which the os-

cillator “expects” another spike to occur. If the spike occurs
at exactly the right time, the derivative is zero and there is

no change. If the spike occurs slightly early, the derivative is

positive and the phase increases. If the spike occurs late, the
derivative is negative and the phase decreases. This process of
adjustment actively aligns the oscillator with the spike train.

Just as importantly, there is a zone between pulses where the
value of the waveshape and its derivative are both small. In
this region, the update term is small and the oscillator is in-

sensitive to extraneous spikes and noisy data.

input spikes

Fig. 2. The input spike train (5) excites the AWO. The initial
value in (a) was o = 240 ms and the oscillator synchronizes
to a 2:1 rate (two oscillator pulses occur for each input spike).
(b) and (d) were initialized at « = 1050 ms. The oscillator
synchronizes to a 1:2 rate (one oscillator output for every two
input spikes). Depending on the initial value of 3, the oscil-
lator can lock onto either the odd or the even spikes. (c) was
initialized at o = 550 ms. Other synchronizations such as 3:2
are also possible.

Fig. 2 shows how the AWO responds to an input
i(t):{ (1) t=nT, n=12,... M

otherwise
that is a regular train of spikes spaced 7' = 500 ms apart. The
simulation uses a Gaussian pulse with phase and frequency
parameters adapted according to (3) and (4). In (c), o was
initialized with period 550 ms, corresponding to a 10% er-
ror. The phase and frequency converge within a few seconds
and the pulses align with the spikes. The oscillator contin-
ues at the adapted frequency even after the input ceases. The

)
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same oscillator may synchronize in various ways to the same
input depending on the initial values. The figure also shows
1:2, 2:1, and 3:2 entrainments where n:m means that n peri-
ods of the oscillator occur in the same time as m periods of
the input. While such nonunity entrainments are common in
the mode locking of oscillators, they are encouraged by the
specifics of the waveshape: the dead (zero) region between
pulses means that the adaptation is insensitive to spikes that
occur far away from expected location. These simulations
(using the Gaussian pulse shape) are effectively the same as
when using a Large-Kolen oscillator or a cosine oscillator (as
suggested in [8]), suggesting that the details of the waveshape
are not particularly crucial to the ability of the adaptation to
achieve synchronization.

Adaptive oscillators are often designed to synchronize to
specific classes of input sequences such as spike trains (5).
When the input is indeed of this form, it is reasonably straight-
forward to understand the convergence of the oscillator by
plotting the cost function for all possible values of the pa-
rameters. The two-dimensional cost function for the AWO
with Gaussian waveshape and correlation cost .J (v, 5) of (2)
is shown in Fig. 3. The summits are the values to which the
algorithm converges; when initialized at some «, 3, the pa-
rameters adjust so that the cost increases at each time step.
The parameter o is normalized so that unity corresponds to
one period of the oscillator for each input spike. As J ranges
between zero and «, it covers all the possible phases.

J(o.B) — = ‘
» A

Fig. 3. The cost surface for the phase and frequency updates
(3)-(4) of the AWO. Depending on the initial values, the pe-
riod may converge to a = 1,2, 3, .. .or any of the other peaks
at integer multiples. There are also stable regions of attraction
surrounding o = 0.5, 1.5, 2.5, and 3.5, which correspond to
various n:m synchronizations.

Observe that the oscillator may converge to different val-
ues depending on its initialization. If started near o = 1, it
inevitably synchronizes so that each period of the oscillator is
aligned with an input spike. But other values are possible: o
may converge to an integer multiple, or to a variety of n:m
synchronizations. Some of the behaviors that are suggested
by the cost surfaces are provable. For example, Appendix C

in [1] analyzes the cost function for the correlation cost when
the input and output are spike trains. As expected, the result
is that the cost is maximized exactly when the frequency of
the oscillator matches the rate of the input, or at some simple
integer multiple (or submultiple).

Obviously, the wavetable w(¢) may assume a large variety
of different shapes, as suggested in Fig. 1. But it cannot be
arbitrary. Assume that the output of the AWO is

o(t) = Z w(t — ma — f) 6)

m=1

and let the input be a pulse train with period a * and phase 5~

i)=Y d(t—na"—g). (7)

n=—oc

The cost function is then
N N
J(a,8) = ZZw(na*—f—ﬁ*—ma—ﬁ). 8)
m=1n=1

If the wavetable (a) has a global maximum at ¢ = 0, (b)
has support (— §, %), (c) is monotonic increasing in (— 5, 0),
and (d) is symmetric about + = 0, then the cost function
achieves its extremal points at one of the simple integer mul-
tiples n:m which correspond to the points at which the algo-
rithm achieves synchronization. Appendix D of [1] provides

the details and a proof.

4. APPLICATION TO MIDI BEAT TRACKING

An AWO is applied to a MIDI rendition of the Beatles’ song
Michelle drawn from the Music, Mind, Machine website [11]
of expressive polyphonic piano performances which exhibit
“considerable fluctuation in the tempo” [2]. First, the MIDI
event list file is processed to turn the data into a sampled spike
train suitable for input to an AWO. Suppose that the ith ele-
ment of the MIDI event list occurs at time #;. Let a[i] = 1 if
this is a note-on event and zero otherwise, and quantize ¢; to
the nearest integer multiple of the sampling rate (1, = 101W
of a second is used in the simulations). The spike train is then

the function
alz

A wavetable is chosen (Gaussian is used in the simulations)
along with initial (nominal) values for the period a and phase
4 (0.4 and 0). When all goes well, the oscillator synchronizes
to the input 2 (¢) in such as way that the maximum value of the
output (a Gaussian pulse train with period defined at time &
by «y,) occurs at each beat location, or at some simple integer
multiple (or divisor) of the beat, as suggested by the analysis
of the previous section.

ift =1¢;
otherwise

)
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The beat tracking can be observed by superimposing a
noise burst at each detected beat time. The results can be
heard on our website at [10]. The noise bursts lock onto the
beat rapidly and follow changes in the pulse. Careful listening
reveals a glitch at around 29 sec, which is caused by a rapid
succession of note events that momentarily increase «. By
about 32 seconds, the pulse is regained. Because of the pro-
jection, the process is causal and can be implemented in real
time (though the simulations reported here are implemented
offline in MATLAB).

The cost surface for Michelle is plotted in Fig. 4. Over-
all, the surface is considerably rougher than the cost function
for the idealized pulse train in Fig. 3. The string of large
peaks represents the beat rate to which the algorithm con-
verges. The various possibilities for 3 represent successive
beats to which it might lock. There are stable points for both
larger and smaller « (corresponding to both slower and faster
tap rates), though the quarter-note pulse has the largest region
of attraction. By initializing the oscillator at different values,
it is possible to locate these other levels of the metric hierar-
chy.

J(o.B) |

Fig. 4. The cost surface for the phase and frequency updates
(3)-(4) of the AWO for the song Michelle.

This shows the overall averaged surface over which the
algorithm evolves. In operation, the algorithm reacts to some-
what rougher time-varying instantaneous surfaces. One may
posit, for example, that at the time of the glitch (at 29 sec-
onds), the surface momentarily flattens or bends away from
the steady underlying pulse.

5. CONCLUSIONS

The are many ways to accomplish the beat-tracking task. The
use of oscillators that can adapt their parameters has several
advantages: it is computationally simple, collections of oscil-
lators can be combined to simultaneously locate several levels
of a metric hierarchy, and the internal parameters (represent-
ing period and phase) are easy to understand and initialize.
AWOs are a particularly appealing type of oscillator because

they cleanly separate the dynamics of the state from the dy-
namics of the adaptation. The drawing of cost functions al-
lows the behaviors of the algorithm to be easily visualized and
some of the simpler behaviors are provable.
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