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ABSTRACT

In this paper we describe our work in coupling automatic speech
recognition (ASR) and machine translation (MT) in a speech transla-
tion enhanced automatic speech recognition (STE-ASR) framework
for transcribing and translating European Parliament speeches. We
demonstrate the influence of the quality of the ASR component on
the MT performance, by comparing a series of WERs with the cor-
responding automatic translation scores. By porting an STE-ASR
framework to the task at hand, we show how the word errors for
transcribing English and Spanish speeches can be lowered by 3.0%
and 4.8% relative, respectively.

Index Terms— Speech Recognition, Machine Translation, Eu-
ropean Parliamentary Plenary Sessions, TC-STAR, STE-ASR

1. INTRODUCTION

For many years automatic speech recognition (ASR) and machine
translation (MT) evolved independently from each other. Speech-
To-Speech Translation (SST) is one field that brings together these
two separate sciences now. Projects, such as the European Union
sponsored, integrated project TC-STAR, have set out to improve and
build closely integrated SST systems.

Naturally, errors committed by the ASR components lead to ad-
ditional errors in the Machine Translation component on top of the
ones that would be observed on error free transcriptions of speech.
Therefore, one of the major research directions is still the improve-
ment of the individual recognition and translation components. But
the field of closely integrating machine translation and speech recog-
nition are special interest as well. One way to do this, is the use of
a speech translation enhanced ASR setup, as we have described in
previous work [1].

Section 2 introduces the TC-STAR project and the task of trans-
lating European Parliament Plenary Sessions. Section 3 then de-
scribes our systems for this task that were used to conduct the ex-
periments reported in this paper. In section 4 we then report on our
findings in the relation between the WER of our ASR systems and
the quality of our MT systems using three automatic translation qual-
ity scores. Finally, in section 5.1, we describe our work in applying
a speech translation enhanced ASR setup to the speeches in order to
improve the automatic transcriptions of them.

2. TC-STAR AND EPPS

The experiments described in this paper were performed in the
context of the European Integrated Project Technologies and Cor-
pora for Speech-to-Speech-Translation (TC-STAR) (http://www.tc-

star.org) which is envisaged as a long-term effort to advance research
in all core technologies for Speech-to-Speech Translation.

TC-STAR currently focuses on the three languages English,
Spanish, and Chinese. The tasks on which recognition, translation,
and synthesis are performed are Broadcast News for the translation
direction Chinese to English, and speeches given in the European
Parliament for the directions English to Spanish and vice versa.

2.1. European Parliamentary Speeches Corpus

The parliament of the European Union operates in 21 official lan-
guages. The fact that all official transactions, whether in verbal or
written form, within the European Parliament have to be made avail-
able in all official languages, makes the parliament an ideal envi-
ronment for SST research, since it produces a wealth of often even
parallel audio and text material.

The European Parliamentary Speeches (EPPS) task within TC-
STAR focuses on transcribing speeches given in the European Parlia-
ment in English and Spanish, and translating them into the other lan-
guage. In order to adequately address this task a number of language
resources was created within TC-STAR [2]. For Automatic Speech
Recognition the data for this task has been recorded from the Euro-
pean Union’s TV Information service Europe by Satellite (EbS). The
recordings include the original audio from the speakers as well as
simultaneous translations into all official languages of the European
Union [3]. For the second TC-STAR evaluation roughly 100h of
transcribed debates for each, Spanish and English, were available as
training material. For Spanish additional 40h of transcribed speech
from the Spanish parliament, the CORTES data, was available.

Also available within TC-STAR is a corpus of parallel data con-
sisting of the final text editions from the European Parliament avail-
able through the EuroParl website (http://www.europarl.europa.eu),
processed and aligned by RWTH Aachen.

For the evaluation within TC-STAR the consortium provided
among other resources a development set (dev2006) of 3 hours
of speech for each language. No utterance level segmentation or
speaker labels were given. The development sets, however, were di-
vided into seven sessions for English and fourteen sessions for Span-
ish.

3. SYSTEMS USED

The experiments reported in this paper require the use of two speech
recognition and two machine translation systems which we describe
in this section.

IV  12931424407281/07/$20.00 ©2007 IEEE ICASSP 2007



3.1. ASR

The speech recognition systems used for our experiments were
trained with the help of the Janus Recognition Toolkit (JRTk) which
features the Ibis one-pass decoder [4]. As resources for training and
testing we made use of the corpora provided within TC-STAR as de-
scribed in 2.1 above. The English and Spanish evaluation systems
consist of several left-right Hidden Markov Models (HMMs) with-
out state skipping with three HMM states per phoneme. The training
of the acoustic model involved applying an incremental splitting of
Gaussians training followed by estimating one global semi-tied co-
variance matrix after LDA and several iterations of Viterbi training.
In addition to that Constrained Feature Space Maximum Likelihood
Linear Regression training (fMLLR)was applied to the models in
the last stage of the systems. Training of the language models was
performed with the help of the SRILM Toolkit [5].

3.1.1. English ASR

The English recognition system used in the experiments for this pa-
per is the ISL system for the TC-STAR Spring 2005 evaluation [6].
For the purpose of cross-system adaptation we trained systems with
models of different sizes, based on two different phoneme sets, and
on two different kinds of front-ends [7]. One front-end is based
on the traditionally used Mel-frequency scaled Cepstral Coefficients
(MFCC), the other one on the Minimum Variance Distortion-less
Response (MVDR)[8]. One phoneme set is based on the CMU dic-
tionary, the other one on the Pronlex phoneme set.

For the language model we first trained separate 4-gram lan-
guage models on the following corpora: the EPPS transcriptions, the
EPPS final text editions, Hub4 Broadcast News data, and the English
part of the UN Parallel Text Corpus v1.0. The resulting language
models were then interpolated into one language model while tun-
ing the interpolation weights on the 2005 EPPS development data.
The resulting model yields a perplexity of 93 on the EPPS 2006 de-
velopment set.

The system in the form used in this paper is made up of four
stages. Each stage consists of two systems, one based on the MFCC
front-end, the other on the MVDR. The output of both systems is
combined via Confusion Network Combination (CNC)[9] to the fi-
nal output of the stage. Stage 1 uses speaker independent acoustic
models, all other stages use acoustic models that were unsupervised
adapted on the output from the previous stage using Vocal Tract
Length Normalization (VTLN), Maximum Likelihood Linear Re-
gression (MLLR), and feature space constrained MLLR (fMLLR).
The systems of stage 1, 2, and 4 are based on the Pronlex phoneme
set, the systems in stage 3 on the CMU dictionary phoneme set. The
frame shift of the acoustic front-ends is 10ms in the first stage and
8ms in all other stages. The system achieves an WER of 12.6% on
the EPPS 2006 development set.

3.1.2. Spanish ASR

The Spanish ASR system consists of two stages with two systems per
stage, one based on an MFCC front-end and one based on an MVDR
front-end. The outputs of the two systems in a stage are again com-
bined via CNC. The models of the second stage are adapted on the
output from the first stage via VTLN, MLLR, and fMLLR. The
frame shift in both front-ends for the first stage is 10 ms, and 8 ms
for the second stage.

The dictionary and language model were created using the EPPS
final text editions, the CORTES texts, and the EPPS + CORTES tran-
scriptions.For each of the before mentioned corpora, a case sensitive

4-gram LM was computed and a final LM was created by interpola-
tions of these. The interpolations weights were chosen to minimize
the perplexity on the 2006 TC-STAR development set. The final 4-
gram LM yielded a perplexity of 83 on the 2006 development set.
The pronunciation dictionary has a size of 77.9K entries over a case
sensitive vocabulary of 63.3K. The OOV rate is 0.67% on the de-
velopment set. The word error rate after the second pass was 8.4%
case-insensitive and 9.5% case-sensitive.

3.2. MT

The statistical machine translation system used for our experiments
is based on phrase-to-phrase translations and was trained on the data
mentioned in 2.1. Extraction of phrase translation candidate pairs
is done by the PESA method, which views phrase alignment as a
sentence splitting approach [10]. To allow for the use of phrases of
arbitrary length, we do not build a static phrase table containing all
possible phrase pairs up to a certain length, but extract phrase pairs
from the bilingual corpus at decoding time [11].

The decoder used in the translation experiments is a beam search
decoder which allows for restricted word reordering and uses the
following models: 1. The translation model, i.e. the word-to-word
and phrase-to-phrase translations extracted from the bilingual cor-
pus. 2. A trigram language model, trained with the SRI language
model toolkit [5] using modified Kneser-Ney smoothing. 3. A word
reordering model, which assigns higher costs to longer distance re-
ordering. 4. Simple word and phrase count models which com-
pensate the tendency of the language model to prefer shorter trans-
lations, and favor longer phrases over shorter ones, potentially im-
proving fluency. Each model score is multiplied by a scaling factor
which can be modified to tune the overall system. More details can
be found in [11].

The decoding process works in two stages: First, the word-to-
word and phrase-to-phrase translations are used to generate a trans-
lation lattice. The second step is then a modified shortest path search
through this lattice. Shortest, as we use the negative logarithms of
the model probabilities. Modified, as we allow for word reordering.
Decoding proceeds essentially along the source sentence. At each
step, however, the next word or phrase to be translated may be se-
lected from all words or phrases starting within a given look-ahead
window from the current position [12].

4. INFLUENCE OF THE ASR ON THE TRANSLATION
PERFORMANCE

When compared to translating written text, machine translation of
spontaneous speech faces several new challenges. Other than in
text automatic speech recognition usually does not deliver punctua-
tion. The segments on which ASR often operates and passes on also
do not necessarily correspond to sentences. Often ASR systems do
not provide case-sensitive output. Moreover, spontaneous speech is
filled with malformed utterances due to spontaneous speech effects,
such as disfluencies, repetitions, grammatically incorrect and/or in-
complete sentences etc. On top of that adds the problem of partially
wrong transcriptions due to recognition errors. These errors then
lead to subsequent errors in the translation.

In order to examine the influence of the ASR errors on the MT
result we took several passes out of the Spanish and English recog-
nition systems described before, that cover a reasonable range of
WERs. The hypotheses with the different WERs were then auto-
matically translated and the quality of the translation was measured
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Fig. 1. WER vs. Translation Quality on the English 2006 Develop-
ment Set.
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Fig. 2. WER vs. Translation Quality on the Spanish 2006 Develop-
ment Set.

using the BLEU, NIST, and TER score. Figure 1 shows the corre-
spondence between WER and translation score for the English sys-
tem, Figure 2 for the Spanish system. Both figures display a roughly
linear influence of the WER on the three translation scores.

5. SPEECH TRANSLATION ENHANCED ASR

In earlier work we experimented with ASR and MT in human me-
diated translation scenarios[13]. These scenarios are characterized
by the presence of one or more human interpreters that translate the
speech from a speaker into one or several other languages. In these
scenarios it is often desirable to have a written transcript of the orig-
inal speech from the speaker as well as the speech that is the result
of the interpreter’s translation, e.g. for archiving or publication pur-
poses.

The sessions of the European parliament are an excellent ex-
ample of such a scenario in which the speech of a speaker is si-
multaneously translated into 21 languages. Further, transcriptions
of the original speech and its translation are being kept, published,
and archived. Currently the transcriptions and translations are done
by humans. Here automatic speech transcription systems can be a
valuable tool.

The goal of speech translation enhanced ASR (STE-ASR) as in-
troduced in [1] and [14] is to improve the speech recognition perfor-
mance in one language, regardless of whether the speech comes from
the original speaker or an interpreter, by making use of all available
parallel speech and other information (e.g. in the form of documents)
in all available languages. This is done by automatically translating
the multilingual information into the language of the ASR system
and then biasing the ASR system toward the gained knowledge. Fig-
ure 3 gives an overview of the setup for the case human speech in

the foreign language is available.

In our previous work STE-ASR techniques were successfully
applied to the bilingual Basic Travel Expression Corpus (BTEC)
[15]. In these experiments we assumed that for every spoken source
sentence, the respective target sentence audio data is available and
fully aligned with the source sentence. Under this assumption it was
possible to directly bias the source language ASR system for each
sentence.

However, in more complex translation scenarios, such as it is the
case for the European Parliament, this assumption no longer holds.
Here, the source language speech and the speech in the various tar-
get languages is only loosely aligned and parallel multilingual in-
formation only occurs in a variable time frame at approximately the
same time. In addition, the simultaneous translations from the hu-
man translators suffer from frequent synopses, omissions and self-
corrections.

In this work we present the results of our first experiments in
extending the STE-ASR approach to the EPPS task. These experi-
ments partially factor out the above mentioned problems of real si-
multaneous translations by using parallel bilingual information that
is aligned on a per session basis only.

5.1. STE-ASR Experiments

The 2006 Spanish and English ASR TC-STAR development sets
only contain speech from politicians and no speech from the si-
multaneous translators. This means that both development sets do
not contain any simultaneous translations of each other, as it would
be necessary for directly applying speech translation enhanced ASR
techniques.

For the evaluation of machine translation on the two develop-
ment sets, human reference translations of the development sets into
the opposite language were produced. We took these reference trans-
lations instead of simultaneous translations. In order to perform the
STE experiments we automatically translated the English reference
translations back to Spanish and the Spanish reference translations
back to English using the MT systems described above.

As a baseline ASR systems we took the MFCC pass from the
last stage of the English system and the last stage of the Spanish
ASR system. In order to bias the systems toward the automatic
translations, we interpolated the baseline 4-gram language models
of the English and Spanish ASR system respectively with small 4-
gram language models computed on these translations. Two sets of
experiments for this method were performed.

First we estimated language models on the complete 2006 de-
velopment set and then interpolated them with the language model
of the recognition systems. The interpolation weight was calculated
by minimizing the perplexity on the development set. For English
the calculation of the interpolation weight on the development set
was straight forward and resulted in an interpolation weight of 0.1
for the LM trained on the translation. The perplexity on the devel-
opment decreased from 93.5 to 90.0, the WER dropped from 13.2%
to 13.0%.

For Spanish, the automatic translations were provided in lower-
case only. Since the Spanish ASR system utilizes a case sensitive
language model we therefore had to deal with the question of how
to chose the interpolation weight of the small, lowercase only trans-
lation LM. To address this question, we conducted two experiments.
At first, we chose the interpolation weight as to achieve a minimal
perplexity on the case sensitive development set. This resulted in an
interpolation weight of 0.04 for the language model estimated on the
translation, and the perplexity of the language model on the devel-
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Fig. 3. STE-Enhanced ASR

opment set decreased from 83.23 to 82.45. Secondly, we converted
the baseline LM into a lowercase only LM and then chose the inter-
polation weight as to minimize the perplexity on the lowercase only
development set. The resulting interpolation weight was 0.07 and
the perplexity on the lowercase only development set decreased from
85.3 to 83.0. However, the final LM used for recognition was again
an interpolation of the case sensitive baseline LM and the lowercase
only translation LM weighted with 0.07. This final LM yielded a
perplexity of 82.53 on the case sensitive development set. Although
the decrease in perplexity was only minimal, we observed a reduc-
tion in WER of 0.2% absolute for both interpolated LMs, from 8.4%
to 8.2%. However, the case sensitive WER of 9.5% could not be
decreased.

In the second set of experiments, we now calculated separate
LMs for the individual sessions in the development set. We did this
by interpolating the original language model of the recognition sys-
tems with language models that were calculated on the translations
of the respective sessions only. The interpolation weights were not
calculated a new but rather taken from the first set of experiments
and kept the same for a all session dependent language models.

For English the word error rate with the session dependent LMs
dropped further, down to 12.8%, for Spanish down to 8.0%. How-
ever, again the case sensitive WER for Spanish could not be de-
creased. While with the baseline LM the average perplexity per ses-
sion was 109.9 for English and 94.1 for Spanish, these drop to 105.0
for English and 89.5 for Spanish, when using the LM interpolated
on the whole development set, and to 91.6 and 72.2 when using the
session dependent LMs.

6. CONCLUSION

In this paper we have addressed the influence of the quality of the
automatic speech recognition component on the machine translation
quality in a speech-to-speech translation setup. Experiments on the
EPPS task show an approximately linear influence of the WER onto
three automatic translation error scores.

We further demonstrated, how speech translation enhanced
automatic speech recognition techniques can be extended to im-
prove the automatic transcription of European Parliamentary Plenary
Speeches. In our current work we limited ourselves to the languages
English and Spanish, thereby reducing the WER on English by 3.0%
relative and 4.8% on Spanish. By incorporating additional languages
into the setup and by refining the selection and alignment of the mul-
tilingual knowledge we anticipate even larger reductions in WER in
our future work.
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