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ABSTRACT

This paper reports on experiments to quantify the impact of
Automatic Speech Recognition (ASR) in general and discrim-
inatively trained ASR in particular on the Machine Transla-
tion (MT) performance. The Minimum Phone Error (MPE)
training method is employed for building the discriminative
ASR acoustic models and a Weighted Finite State Transducer
(WFST) based method is used for MT. The experiments are
performed on a two–way English/Dialectal–Arabic speech–to-
speech (S2S) translation task in the military/medical domain.
We demonstrate the relationship between ASR and MT per-
formance measured by BLEU and human judgment for both
directions of the translation. Moreover, we question the use
of BLEU metric for assessing the MT quality, present our
observations and draw some conclusions.

Index Terms: Speech Recognition, ASR, Machine
Translation, MT, Performance Metric.

1. INTRODUCTION

Despite recent effort to improve integration of ASR
and MT components through a word graph interface [1]
so as to reduce the impact of ASR errors on the S2S trans-
lation performance, current state-of-the-art S2S trans-
lation systems are built by cascading ASR and MT
components. In the cascade integration paradigm the
ASR and MT operate independently without tight cou-
pling. Typically, the MT component is presented with
the single-best recognition hypothesis. As such, poor
ASR performance should have a great impact on the
S2S performance. This impact should be particularly
pronounced if the system is operating in a mismatched
acoustic/environmental condition where the Word Error
Rate (WER) is high.

It is generally assumed that improving the ASR per-
formance improves the MT performance. However, so
far this relationship has not been thoroughly studied,
since researchers have been primarily focusing on im-
proving automatic performance metric scores that are in
some way correlated with actual performance improve-
ment perceived by the users. However, taking the S2S
systems out of the laboratory to deploy in real world
requires not only the examination of the “true” impact
of the ASR on the S2S performance but also question-
ing the automatic performance metrics used for assessing
the MT quality. Even though automatic metrics such as
BLEU [2] have previously been shown to correlate well
with human judgment, there is a new study questioning
this correlation [3]. Therefore, it is essential to quantify

the impact of ASR improvements on the S2S translation
performance using not only BLEU [2] but also human
judgment. Here, the particular questions we want to an-
swer are: 1) How does WER effect human judgment of
translation quality as compared to an automatic metric
like BLEU, 2) How much MT improvement one can get
from discriminative training of ASR acoustic models, 3)
What are the issues with BLEU in assessing MT quality.

The rest of the paper is organized as follows. Section
2 describes the discriminative ASR training method. A
brief description of WFST based MT is provided in Sec-
tion 3. The experimental setup introducing the data as
well as the ASR architecture is presented in Section 4.
Results and discussion are provided in Section 5. Finally,
Section 6 summarizes the findings.

2. DISCRIMINATIVE ACOUSTIC MODEL
TRAINING

Until the last few years discriminative training tech-
niques were thought to be ineffective in reducing WER
for large vocabulary ASR tasks using HMM systems.
The key issues were a viable computational framework
which allows incorrect word hypotheses to be efficiently
processed and good generalization to test data. The
computation issue is circumvented by using a lattice-
based framework along with the Extended Baum–Welch
(EBW) algorithm [4] for Maximum Mutual Information
Estimation (MMIE) training of the parameters. Gener-
alization is improved by using acoustic scaling to increase
the effective amount of confusable data [5] and a weak
unigram language model during training.

As an alternative to MMIE training the Minimum
Word Error (MWE) objective function was previously
proposed [6]. MWE maximizes the expected word accu-
racy and can easily be computed in a lattice framework.
As a natural extension to MWE the Minimum Phone Er-
ror (MPE) criterion which uses the same approach at the
phone level was also proposed [6]. MPE is the summed
“Raw Phone Accuracy” (RPA) times the posterior sen-
tence probability. For R training observation sequences
{O1, ...,Or, ...,OR} with corresponding transcriptions sr,
the MPE objective function for HMM parameter set λ,
including the effect of scaling the acoustic and LM prob-
abilities can be written:

FMPE(λ) =
∑R

r=1

�
s pλ(Or|s)KP (s)KRPA(s,sr)
�

s pλ(Or|s)KP (s)K

=
∑R

r=1

∑
s PK(sr|Or, λ)RPA(s, sr), (1)
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This function measures the expected phone accuracy of
a sentence drawn randomly from the possible transcrip-
tions. The summation in the denominator is taken over
all possible word sequences allowed in the task. Hence
MPE training maximizes the posterior probability of the
correct phone sequence. The denominator can be approx-
imated by a word lattice of alternative sentence hypothe-
ses. MPE was shown to outperform both MMIE and
MWE on a number of large vocabulary ASR tasks [6].

3. WFST BASED MACHINE TRANSLATION

The statistical MT problem has been formulated as that
of finding the most likely word sequence, ê, in some target
language E, given the word sequence, f , in the source
language F [7]:

ê = arg max
e

P (f |e)P (e), (2)

where P (e) is the language model of E, P (e|f) is the
translation model and the argmax operation denotes the
search problem. Hence, a statistical MT system con-
sists of a training phase to construct the translation and
language models and a search phase to decode the most
likely word sequence in a target language. For this study,
we use a memory efficient and fast phrase-based statisti-
cal machine translation system introduced in [8]. In this
approach, we statistically construct a single optimized
WFST, which is titled Statistical Integrated Phrase Lat-
tice (SIPL). A beam Viterbi decoder employing a mul-
tilayer search algorithm [8] is developed to combine the
translation model and language model FSTs with the in-
put lattice efficiently. The translation problem can be
framed as finding the best path in the full search lattice
given an input sentence/automaton I. To address the
problem of efficiently computing I o M o L, we have
developed a multilayer search algorithm. Here, o is the
FST composition operator, L (P (e) in Eq. 2) is the tar-
get language model, and M (P (f |e) in Eq. 2) is the SIPL
that encodes the translation model, which is computed
as follows:

M = Min(Min(Det(P )oT )oW ), (3)

where Det and Min denote the determinization and min-
imization operations respectively and P , T , and W refer
to the transducers of source language segmentation, the
phrase translation, and the target language phrase-to-
word transducers, respectively. The P in Eq. 3 becomes
determinizable due to an auxiliary symbol, EOP that
marks the end of each distinct source phrase [8]. In spite
of the fact that T and W in Eq. 3 are not deterministic
and that minimization is formally defined on determinis-
tic machines, in practice we often find that minimization
can help reduce the number of states of non-deterministic
machines. It should also be noted that due to the deter-
minizability of P , M can be computed offline using a
moderate amount of memory. The multilayer search al-
gorithm has not only significant memory efficiency and
being faster than general composition implementations

found in FSM toolkits, but it can also incorporate infor-
mation sources that cannot be easily represented using a
available WFST toolkits. For example, the decoder al-
lows us to apply the translation length and phrase penal-
ties to score the partial translation candidates during
search.

4. SPEECH RECOGNITION SYSTEM
ARCHITECTURE

The Iraqi–Arabic acoustic training data consists of
about 200 hours of speech collected in the context of a
S2S translation project [9, 10], which covers the military
and medical domains. The acoustic features and model
training algorithms are common to both Iraqi–Arabic
and English. The speech data is sampled at 16kHz and
the feature vectors are computed every 10ms. The 24
dimensional MFCC features are then mean normalized,
and 9 vectors are stacked leading to a 216–dimensional
parameter space. The feature space is finally reduced to
40 dimensions using a combination of linear discriminant
analysis (LDA), and maximum likelihood linear transfor-
mation (MLLT). There are 33 graphemes representing
the speech and silence. Each phone is modeled with a
3-state left-to-right HMM. Building the decision tree for
the Iraqi–Arabic data results in about 2K leaves and 75K
Gaussians. On the other hand the English acoustic mod-
els are trained on about 400 hours of acoustic data that is
largely collected for non–S2S applications. The English
system uses an alphabet of 52 phones. This system has
approximately 3.5K context–dependent states modeled
using 42K Gaussian distributions.

A statistical trigram language model is built for both
English and Iraqi Arabic side of the S2S system. The
English language model uses a corpus of 6.4M words
with 30K unique vocabulary items. The Iraqi–Arabic
language model uses about 400K utterances with 98K
vocabulary items for language modeling. All language
models are built using modified Knesser-Ney smoothing
technique [12].

5. RESULTS and DISCUSSION

5.1 ASR Results
The ASR test data consists of 1440 parallel utter-

ances on the English (EN) and Iraqi–Arabic (IA) sides.
This data is obtained from real dialogs spoken by native
speakers of each language. Table 1 shows the WERs for
MLE and MPE trained ASR acoustic models. MPE gives
the largest reduction in WER for the English (EN) side
(42% relative reduction). The improvement on the Iraqi–
Arabic (IA) side is not as large (19% relative reduction).
It should be noted that MPE iterations beyond two did
not provide further improvement.

5.2 MT Results
The MT component uses a parallel corpus of about

337K utterances to build the translation models and also
uses the same test data as that of the ASR. In order
to simulate the ASR output at different WERs, speech
is recognized using both the MLE acoustic model and
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EN IA EN → IA IA → EN
Models WER (%) BLEU

Perfect Text 0 0 0.2379 0.3987
MLE 12.7 33.4 0.2043 0.3150

MPE.1 8.2 28.8 0.2219 0.3765
MPE.2 7.3 27.2 0.2211 0.3805

Table 1: Word Error Rates (WER) for various English (EN) and
Iraqi–Arabic (IA) ASR acoustic models and the evaluation of the
translation performance using the BLEU Score.

EN → IA IA → EN
Trans. Perf. Text Trans. Perf. Text

Reference Trans. Reference Trans.
# Words 8385 7980 10425 9655
Perplexity 386 281 77 56

4gr Hit Rate 46% 49% 58% 68%

Table 2: Perplexity and 4gr Hit Rates for the Translation Refer-
ence and Perfect Text Translation.

different iterations of MPE trained models. The ASR
output is then fed into the MT unit. The MT results are
evaluated using the BLEU metric and Human Evaluators
(HE). The BLEU metric is defined as follows:

BLEU = BP · exp(
N∑

n=1

wn log pn), (4)

where N (typically 4) is the maximum n-gram length,
wn and pn are the corresponding weight and precision,
respectively, and BP is the brevity penalty.

The BLEU scores for the translations of the ASR out-
puts are also shown in Table 1 along with the translations
of the perfect text (i.e, bypassing ASR and using human
transcription of the speech). The scores are higher for
IA → EN compared to EN → IA. The BLEU scores
of the perfect text translations suggest that the transla-
tion is more accurate for the IA → EN direction. We
believe this is due to two factors contributing to large
-what we call- the Intrinsic Language Perplexity (ILP)
for IA: i) low n-gram hit rate that the BLEU is based
on and ii) highly inflected nature of the Arabic language.
For example, despite using the parallel corpora the vo-
cabulary size for IA (80K) is more than three times as
large as that of EN (24K). In addition, in Table 2 the
perplexity and the 4gr hit rates are presented for the
“Translation Reference” and “Perfect Text Translation”
for both directions of the translation. This table essen-
tially compares the respective ILPs for EN and IA by
building language models using the parallel corpus and
testing on the translation of the same test data. The
perplexity figures for IA are about five times as large
as those for EN . Likewise, the 4gr hit rates for EN are
12% to 19% higher than those for IA. All of these results
suggest that ILP for IA is higher than that for EN .

Discriminatively trained ASR output results in a sig-
nificant 6.5 points improvement in BLEU scores for the
IA → EN , whereas the improvement is about 1.7 point
for the reverse direction. It is worth noting that for both
translation directions there is a mere 1.7 (or 1.8) point
difference between perfect text and MPE.2 ASR output.
Another interesting observation is the fact that improv-
ing the WER from 27% to 0% (perfect text) results in
only a 1.8 point improvement in BLEU score for IA.

Very Good [4] Perfect Translation
Good [3] Fluent translation with all information conveyed,

there may be extra words or some unimportant
words are missing without affecting the meaning of
the sentence.

OK [2] All important information translated correctly but
some details missing or translation is awkward

Bad [1] Some important information is missing that can lead
to wrong understanding

Very Bad [0] Unacceptable translation, almost all of the impor-
tant information is missing

Table 3: Translation Quality Grades.

5.3 BLEU vs. Human Judgment
Despite widespread use of automatic metrics, human

judgement is still valuable in evaluating the true im-
pact of major changes to conventional translation sys-
tems [11]. For the human evaluation of translation qual-
ity three raters are instructed to assign one of the five
translation quality/accuracy grades listed in Table 3.
The EN → IA BLEU scores (scaled by 100) and the hu-
man judgment scores (scaled by 25) as a function of WER
are plotted in Fig. 1 for the entire test set (BLEU-1) with
1440 sentences and a subset of the test data (BLEU-2),
which is scored by Human Evaluators (HE). The subset
is obtained by taking the union of those utterances that
either MLE or MPE or both ASR outputs have an error.
There are 721 and 1064 such utterances (out of 1440) for
the EN → IA and IA → EN directions, respectively.

BLEU–1 starts at 23.8 for perfect text and linearly
decreases to 10.4 when the WER is at 41.4%. The first
four points in the graph correspond to perfect text, MLE,
MPE.1 and MPE.2 ASR outputs, respectively. The rest
of the WER points are generated by deliberately degrad-
ing the ASR through increasing the acoustic scale beyond
the optimal value. For each percentage point degradation
in WER BLEU–1 decreases by 0.32 point. BLEU–2 also
linearly decreases with increasing WER at a rate of 0.28,
whereas the human evaluation scores decrease by about
1.0 point for each percentage increase in the WER after
fitting a linear line to all three human evaluation scores.
Based on these results it appears that the human judg-
ment is more sensitive to ASR errors than BLEU.

The inter–rater agreement between pairs of HE
was computed using Cohen‘s Kappa statistic. Kappa
scores were 0.19 (HE1,HE2), 0.48 (HE2,HE3), and 0.32
(HE1,HE3), for an average score of 0.33. However, the
raters may agree on the ordering of the translations with
respect to their quality, but not on the overall quality
of each translation, which is not reflected in the Kappa
scores. Therefore, a more appropriate statistic for this
task is Pearson’s r which were, 0.75, 0.79 and 0.75, re-
spectively. All of these scores are significant (p < 0.05)
showing strong correlation between the raters. The first
human evaluator (HE1) is the most forgiving for trans-
lation errors where he assigned scores between 74 to 85
that are “Good” or better according to Table 3.

The IA → EN translation scores are provided in
Fig. 2 where two HE are employed. Both Kappa score
(0.48) and Pearson’s r (0.79) exhibit strong agreement
between the raters. There are several interesting results
one can extract from the figure. First, unlike EN → IA
direction the relationship between the WER and trans-
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Figure 1: BLEU and Human Judgment vs. WER for EN → IA.

lation scores is a piecewise linear function. There is a
critical WER level (∼27% for this case) that has to be
attained to achieve large improvements both in BLEU
and HE scores. However, after the critical level the im-
provement in ASR results in marginal improvements in
BLEU metric. Additionally, human judgment is again
more sensitive to ASR errors than the BLUE score; where
BLUE scores decrease at a rate of 0.07 (BLEU-1) and
0.03 (BLEU-2) for each percentage increase in WER,
whereas human judgment scores degrade at a rate of 0.17
when the WER increases from 0 to 27% WER. Further
increases in WER (from 27% to 40%) results in a faster
rate of decrease for BLEU-1 (1.32) and BLEU-2 (1.34).
It is worth noting how small the reductions in BLEU
scores when the WER degrades from 0 to 27%. The hu-
man judgment scores degrade with a rate of about 1.0
between 27–33% WER.

Learning word and phrase relationships has been
proved to be difficult for statistical MT when the extent
of morphological expression differs significantly across
the source and target languages [13]. Hence, in the future
it is worth investigating whether the findings of this work
generalize to translations between English and other in-
flected languages.

6. CONCLUSIONS
We quantified the impact of ASR on the S2S perfor-

mance on a two–way English/Dialectal–Arabic speech–
to-speech (S2S) translation task in the military/medical
domain. The results demonstrate that the relationship
between WER and BLEU–based MT performance met-
ric is not necessarily linear. In fact it can also be piece-
wise linear function depending on the direction of the
translation and the language pair. Human evaluations
of the MT results show that even though human judg-
ment is correlated with the BLEU metric in differenti-
ating alternative translations, humans are more sensi-
tive to variations in the WER. Discriminative training
of ASR has a significant impact on the translation per-
formance. More importantly, even though the (average)
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Figure 2: BLEU and Human Judgment vs. WER for IA → EN.

human judgments are better for EN → IA direction
the BLEU scores are about half as large as that of the
IA → EN direction, which indicates that the absolute
magnitude of the BLEU score is not a good indicator of
the actual translation quality.
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