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ABSTRACT
This paper presents a set of experiments that we conducted in order
to optimize the performance of an Arabic/English machine trans-
lation system on broadcast news and conversational speech data.
Proper integration of speech-to-text (STT) and machine translation
(MT) requires special attention to issues such as sentence boundary
detection, punctuation, STT accuracy, tokenization, conversion of
spoken numbers and dates to written form, optimization of MT de-
coding weights, and scoring. We discuss these issues, and show that
a carefully tuned STT/MT integration can lead to signi cant transla-
tion accuracy improvements compared to simply feeding the regular
STT output to a text MT system.

Index Terms— Speech Recognition, Machine Translation, Sen-
tence Boundary Detection

1. INTRODUCTION

Most MT systems are trained on a bilingual corpus derived from
text sources. In such a corpus, each foreign segment corresponds
to a sentence, with properly placed punctuation marks. In addition,
all occurrences of numbers, dates, monetary amounts, abbreviations,
etc., in a foreign segment appear as in ordinary text. However, in
an integrated STT/MT system, the MT component needs to process
foreign STT output, which differs from text in several ways:

1. Each STT segment is generated by an automatic audio seg-
mentation process which is based solely on acoustic cues (long
pauses, speaker/channel variations). Therefore, the STT seg-
ments may not correspond to sentences in the foreign lan-
guage.

2. Current STT output consists only of the spoken words, with
no punctuation.

3. Numbers, dates, etc., appear in spoken form, e.g. “two hun-
dred twenty ve” instead of “225”.

Due to the above differences, integration of STT and MT is non-
trivial, as the STT output needs to be processed prior to translation to
(a) detect sentence boundaries, (b) add punctuation, and (c) convert
foreign spoken numbers to digits. In addition, one needs to make
sure that the STT output is tokenized and normalized in a manner
that is consistent with the MT component. Such post-processing of
the STT output is easiest when the integration is based on the 1-best
STT output, rather than a speech lattice. Thus, our rst experiments
used 1-best STT output, resulting in the integration pipeline shown
in Figure 1.
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Fig. 1. The STT/MT integration pipeline investigated in this set of
experiments

The rest of the paper is organized as follows: Section 2 describes
the procedure used to evaluate MT performance in the experiments
presented here. In Section 3, we describe the experimental setup and
show the effect of STT segmentation, accuracy, and punctuation on
MT performance. Section 4 discusses methods for improved sen-
tence boundary detection. The problem of optimizing MT decoding
parameters on speech data is addressed in Section 5. The paper ends
with some conclusions and future work discussion in Section 6.

2. SCORING MT OUTPUT

It is worth mentioning that the work presented in this paper was per-
formed for the Global Autonomous Language Exploitation (GALE)
program, sponsored by the Defense Advanced Research Project Agency
(DARPA). Typically, MT systems are evaluated in terms of BLEU
[1], however, recent studies have shown that Translation Edit Rate
(TER) [2] correlates better with human-mediated TER (HTER), the
primary MT performance evaluation metric used under GALE. Thus,
all the results reported in this paper are based on TER scoring.

Applying TER scoring to the output of STT/MT integration is
not trivial, since the hypothesis and reference translations have dif-
ferent segmentations when translating from automatically segmented
speech, and as a result there is no one-to-one correspondence be-
tween hypothesis and reference segments. In this case, in order to
compute TER properly, one has to group adjacent hypothesis and
reference segments into “chunks” based on their start/end times,
such that both hypothesis and reference agree on the boundaries
within a chunk. This illustrated in the example of Figure 2, where
hypothesis segments H1-H5 were grouped together with reference
segments R1-R3, forming the chunk enclosed by the dotted line.

Notice that in this example, hypothesis segment H6 overlaps
mostly with a gap in the reference segmentation, so H6 is excluded
from TER scoring. We have implemented a set of tools that automate
this scoring procedure. The algorithm for the chunk construction is
given below:
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Fig. 2. Aligning hypothesis and reference segments into chunks, in
order to perform TER calculation

1. For each hypothesis segment, compute its overlap with all ref-
erence segments as a percentage of its duration. If the overlap
is less than a threshold (e.g., 50%), then exclude this hypoth-
esis segment from scoring. This step is needed in order to
avoid insertion errors in regions that are excluded from scor-
ing (e.g., commercials and other non-news segments are typ-
ically excluded when scoring translation of broadcast news
speech).

2. For each reference segment, nd all non-excluded hypothesis
segments that it overlaps with.

3. Loop over the reference segments, and for each pair of adja-
cent segments compute the intersection of their correspond-
ing overlapping hypothesis sets. If the intersection is non-
empty, there is a hypothesis segment that crosses the bound-
ary between the two reference segments (e.g., segment H3 in
Figure 2). In this case we need to include both reference seg-
ments and their related hypotheses as part of the same chunk
for TER scoring. If, on the other hand, the intersection is
empty, we can insert a chunk boundary between the two ref-
erence segments (e.g., between segments R3 and R4 in Figure
2). This process is repeated until all reference segments have
been examined.

Once the chunks have been de ned, hypothesis segments within
each chunk are merged together and are aligned against their corre-
sponding concatenated reference segments, for the purpose of com-
puting the chunk-level TER score. These scores are then averaged
properly across the test set to compute the overall TER. This is the
process that was used to score all the results reported in the tables
that follow.

3. EFFECT OF STT SEGMENTATION, ACCURACY AND
PUNCTUATION ON MT

As mentioned previously, our rst integration experiments ran trans-
lation on the 1-best STT output. All experiments were performed
on bnat05, a 6-hour Arabic Broadcast News (BN) development test
set compiled from several sources from January 2001 and Novem-
ber 2003. Scoring of the STT output was done using NIST tools,
after normalizing hypothesis and reference les using the same nor-
malization script used to process the Arabic side of the MT training
bitext. Scoring of the MT output was based on the TER procedure
described previously, with mixed-case text.

To investigate the effect of STT accuracy on MT performance,
we made use of three STT systems, described below:

STT-A: BBN EARS RT04 Arabic BN grapheme system [3], with
acoustic model trained on 100 hours of speech and a trigram
language model trained on 400 million words of news text.

STT-B: Uses morphological analyzer and automatic methods to in-
fer short vowels in word pronunciations. Makes use of addi-
tional acoustic training data (50 hours).

STT-C: Like STT-B, but with additional language model training
data.

We also used two versions of the BBN MT system, listed below.

MT-A: System developed at BBN during the period Sep 2004 -
Apr 2005. Phrase-based statistical MT model, trained on
100M words of Arabic/English UN and news bitext. Tri-
gram English LM, trained on 2 billion words of text (mostly
newswire). Translation based on posterior probability of En-
glish given Foreign.

MT-B: Uses a combination of generative and posterior translation
probabilities, includes a phrase segmentation score, and uses
a method to compensate for over-estimated translation proba-
bilities. Optimizes decoding weights by minimizing TER on
N-best lists, using a process similar to [4].

The TER scores of systems MT-A and MT-B on the 2002 NIST
MT evaluation test set were 48.29% and 46.35%, respectively.

Table 1 shows integration results obtained on the bnat05 test set,
using various combinations of STT and MT systems. This table also
shows the effect of segmentation and punctuation of STT output on
MT performance.

STT MT STT
Segm. Punc. TER

System System WER
STT-A MT-A 22.2 automatic period 66.76
STT-B MT-A 18.3 automatic period 65.95
STT-B MT-B 18.3 automatic period 64.55
STT-B MT-B 17.6 reference period 61.89
N/A MT-B 0.0 reference period 58.67
N/A MT-B 0.0 reference reference 57.97

Table 1. Results on the bnat05 test set, showing the effect of speech
recognition accuracy, segmentation, and punctuation on TER

We can see that even though system STT-B is signi cantly better
than STT-A in terms of WER, the improvement in TER after translat-
ing with system MT-A is less than 1% absolute. Improving the MT
component, on the other hand, has a larger effect on the TER score.
In the fourth-row experiment we used the reference segmentation
for both STT and MT. Interestingly, this resulted in a small WER
improvement, but a larger TER reduction. If instead of the STT out-
put we use the true reference Arabic transcript (0.0% WER), there is
approximately 3% absolute gain in TER, which indicates that at the
current level of MT performance, dramatic improvements in STT ac-
curacy have only modest effect on TER. All these experiments used
minimal punctuation in the MT input (only an ending period in each
segment). In the last experiment, the full reference punctuation was
used (commas, quotation marks, etc.), however this resulted in only
a small TER improvement, suggesting that accurate punctuation of
the source is not important at this level of MT performance.

In order to better understand the effect of STT segmentation on
TER, we varied the parameters of our automatic audio segmentation
procedure, as shown in Table 2. The segmentation procedure has
two main parameters, the minimum duration of silence to consider
for chopping the audio, and the maximum duration of a chopped
segment.

We can see that ”auto-seg-4” has characteristics similar to the
reference segmentation, ”ref-seg”. All automatic segmentation re-
sults in Table 1 were obtained using segmentation ”auto-seg-1”. A
comparison of the various automatic segmentations in terms of TER
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Seg.
Min. Max. Seg.

#Segments
Avg. Seg.

Sil. Dur. Length Length
(sec) (sec) (sec)

auto-seg-1 0.15 9 3427 6.17
auto-seg-2 0.30 15 2226 9.47
auto-seg-3 0.30 20 1813 11.61
auto-seg-4 0.34 25 1548 13.60

ref-seg N/A N/A 1462 13.58

Table 2. Adjusting the parameters of the BBN automatic audio seg-
mentation procedure on the bnat05 test set in order to increase the
average segment length, trying to match the characteristics of the
reference segmentation (ref-seg)

is shown in Table 3. This comparison was made using system STT-
C for generating the STT output. The results show that the best
TER score is obtained with the longer segmentation, gaining about
1.6% absolute compared to ”auto-seg-1”. Recall from Table 1 that
the TER gain from reference segmentation was about 2.6% absolute
(64.55 to 61.89). Thus, by adjusting the automatic segmentation we
were able to obtain most of that gain.

STT System STT WER Segmentation TER
STT-B 18.3 auto-seg-1 64.55
STT-C 17.8 auto-seg-1 64.40
STT-C 17.7 auto-seg-2 63.05
STT-C 17.7 auto-seg-3 62.89
STT-C 17.7 auto-seg-4 62.80

Table 3. Results on the bnat05 test set, showing the effect of various
automatic audio segmentations on TER. System MT-B was used for
translation in all experiments

The reason for the large effect of segmentation on TER is due to
the fact that when a sentence boundary is misplaced in the hypoth-
esis, the system is penalized with several errors, due to the mixed-
case scoring. Additional errors may incur due to pure translation
errors, since the MT system has been trained and expects to operate
on sentence-like segments. The issue of optimal STT segmentation
for the purposes of MT seems to be very important, and therefore we
have explored an alternate segmentation approach, which is guided
by both acoustic and linguistic cues and is described in Section 4.

It was previously mentioned that the STT output has numbers,
dates, etc. in spoken form, while the MT system expects them in
text form. All results reported in the above tables were obtained
without any special processing of numbers in the STT output. Ide-
ally, translation of numbers should be carried away using specialized
components that detect the type of number (monetary amount, date,
time, percentage, etc.) in the source language and convert it to the
target language using the most appropriate formatting, given the sur-
rounding context. One small step in that direction is to parse the STT
output and convert all spoken numbers to digits. The effect of this
STT post-processing step on TER is shown in Table 4.

4. SENTENCE BOUNDARY DETECTION

The results of the previous section show that tuning acoustic segmen-
tation to match the characteristics of reference segmentation helps,
but this strategy may not generalize well on new test sets. For ex-
ample, Broadcast Conversations (BC) exhibit more frequent speaker

Number Conversion TER
No 62.80
Yes 62.37

Table 4. Results on bnat05, showing the effect of converting Ara-
bic spoken numbers to digits prior to translation. Original STT out-
put was generated by system STT-C, using segmentation auto-seg-4.
MT-B was used for both translation experiments

changes and shorter sentence lengths on average. Therefore, it is
preferable to use a sentence boundary detection (SBD) approach. A
standard technique for SBD is based on a Hidden Event Language
Model (HELM) [5], which tries to detect certain types of punctua-
tion based on linguistic context.

Several sentence boundary detection systems were compared in
terms of punctuation and translation performance. Table 5 provides
brief description of the systems used. The baseline (system 1) simply
inserts periods at the end of each acoustic segment. Systems 2, 3 and
4 discard the acoustic segmentation (with the exception of speaker
turn boundaries where periods are forced),and make use of a 4-gram
HELM trained on 769M words of Arabic news text. System 2 uses
the HELM to insert periods within speaker turns. In system 3, the
language model and silence durations are used jointly, by integrat-
ing silence duration as an observation into the HMM search. Finally,
system 4 uses both language model and silence duration to insert
periods at a high rate (about 50% higher than system 3) and then
remove periods with the lowest model posteriors, while constrain-
ing the maximum sentence length (40 words). This approach helps
overcome the ”short-term memory” limitation of the HMM decod-
ing search. Typically, HMM search considers n-gram contexts of not
more than a few previous words (3 words in case of a 4-gram LM)
making it hard to place restrictions on maximum sentence length.

System Description
SBD-1 Acoustic segmentation baseline
SBD-2 Use only LM to insert periods within speaker turns
SBD-3 Use LM and silence jointly

SBD-4
Insert boundaries at a high rate using LM and silence,
then remove the lowest scoring boundaries,
constraining the maximum sentence length

Table 5. Descriptions of systems used for sentence boundary detec-
tion

Table 6 shows SBD and translation performance of various sys-
tems with respect to the baseline that uses acoustic segments with
the average length of 9.47 seconds. Sentence boundaries produced
with a language model alone (SBD-2) do not lead to improved per-
formance. Adding the silence feature (SBD-3) improves the punctu-
ation accuracy signi cantly, however this corresponds to only small
improvements in translation. The best results are obtained by sys-
tem SBD-4. Translation improvements on Modern Standard Arabic
(MSA) regions are bigger than overall.

The experiments were repeated using a different set of recogni-
tion hypotheses where the average length of acoustic segments was
13.6 seconds (Table 7). In this case the SBD approach provided only
a small additional gain in TER compared to the performance of auto-
seg-4 segmentation. Nevertheless, the HELM-based SBD seems to
be a safe operation on top of any type of acoustic segmentation.
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System
SBD TER

Corr. Del. Ins. Error (TER-MSA)
SBD-1 66.71 33.29 73.03 106.30 62.55 (60.32)
SBD-2 59.44 40.56 57.86 98.42 62.66 (60.25)
SBD-3 68.98 31.02 60.40 91.42 62.49 (60.20)
SBD-4 63.97 36.03 50.10 86.14 62.32 (59.78)

Table 6. Segmentation and translation performance using STT out-
put from system STT-C, with auto-seg-2 acoustic segmentation and
spoken number conversion

System
SBD TER

Corr. Del. Ins. Error (TER-MSA)
SBD-1 56.97 43.03 38.64 81.67 62.37 (60.28)
SBD-2 58.27 41.73 58.13 99.86 62.81 (60.42)
SBD-3 67.40 32.60 57.17 89.77 62.79 (60.28)
SBD-4 70.49 29.51 61.43 90.94 62.34 (60.02)

Table 7. Segmentation and translation performance using STT out-
put from system STT-C, with auto-seg-4 acoustic segmentation and
spoken number conversion

5. OPTIMIZING MT ON SPEECH DATA

Recall that the MT component ranks hypotheses in the translation
search space based on several knowledge sources, whose scores are
combined log-linearly using a set of weights. In all integration ex-
periments reported in the previous sections, the MT decoding weights
were optimized to minimize TER on the NIST MT-02 set, consisting
of newswire text. Broadcast speech has different style than newswire
text, so it is reasonable to expect translation accuracy improvements
from tuning the MT decoding weights on BN-type material.

Ideally, in a joint STT/MT system the MT decoding weights
should be optimized to minimize TER based on translations of STT
output. However, this gets complicated due to the scoring issues
described in Section 2, so we considered the following procedure
instead:

1. Run translation on the Arabic reference transcripts (punctu-
ation included), after automatically converting spoken num-
bers to digits.

2. Tune weights on N-best from step 1, based on the reference
translations. This typically requires a couple of iterations of
step 1 and 2, until the weights converge.

3. Take the best weights from step 2 and use them to translate
automatically segmented STT output.

This procedure is preferable because it eliminates the need to
segment speech according to the reference segmentation and then
run speech recognition on the resulting segments, to generate the
1-best output for translation. When using translations of reference
transcripts for MT tuning, it is important to make sure that each seg-
ment in the STT reference transcripts corresponds to a single sen-
tence. This is necessary because multi-sentence segments tend to
be quite long, resulting in N-best translations where the 1-best hy-
pothesis differs from the rest of the hypotheses in the N-best only
in minor ways (one to two tokens). Such degenerate N-best is not
a good representation of the full hypothesis search space, and could
lead to sub-optimal MT tuning.

In all experiments described below, the decoding weights were
tuned on the bnat06 (BN) and bcat06 (BC) sets, and then were tested

on bnad06 (BN) and bcad06 (BC). These sets total about 6 hours of
speech broadcasted in January of 2006. We used STT output from
models trained on 1000 hours Arabic audio data. The WERs of those
experiments are listed in Table 8.

Test set Usage WER
bnat06

Tuning
21.0

bcat06 29.2
bnad06

Validation
20.1

bcad06 29.7

Table 8. STT output WERs on the Arabic speech tuning sets, bnat06
and bcat06, and on the validation sets bnad06 and bcad06

All results in Table 9 were obtained by translating BBN’s STT
output on bnad06 and bcad06, with automatic segmentation. In each
case, the MT system weights were tuned on the designated set (un-
der column “OptSet”), with 3-4 iterations of optimization. Three
optimization sets are compared: MT-02 set, translations of bnat06
and bcat06 reference transcripts (bnc-ref), and manually segmented
(according to reference) bnat06 and bcat06 STT output (bnc-stt).

We can see that, although there is a clear bene t for tuning MT
system weights on bnat06 and bcat06 (as opposed to using weights
estimated on MT02), there is no signi cant difference between tun-
ing on translations of STT output or reference transcripts.

OptSet
bnad06 bcad06

TER BLEU TER BLEU
MT02 67.42 13.14 73.32 10.33
bnc-ref 66.78 15.07 71.85 12.19
bnc-stt 66.86 14.94 71.93 12.14

Table 9. Results on bnad06 (BN) and bcad06 (BC), showing how
translation of automatically segmented STT output is affected by the
optimization set used to tune MT decoding weights

6. CONCLUSIONS AND FUTURE WORK

This paper has addressed several issues that arise in the integration
of STT and MT components. Experimental results show that sig-
ni cant translation accuracy improvements can be obtained by pay-
ing special attention to sentence segmentation, conversion of spoken
numbers to written form, and MT decoding weight optimization. Fu-
ture work will include translation of speech lattice output and joint
optimization of STT and MT components.
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