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ABSTRACT
A case study on reproducible research in sampling theory of
signals containing a nite rate of innovation is the topic of
this paper. By building a solid research which is furthermore
reproducible enables the researcher to build intuition in a re-
search area and to progress at a much faster pace. Here, we
show that the founding problem of sampling and exact recon-
truction of periodic streams of Dirac pulse will be the basis of
the sampling theory for signals with nite rate of innovation.
The sampling theory can be extended to other signals such
as piecewise polynomials, bandlimited signals with additive
shotnoise and the sum of bandlimited signals with piecewise
polynomial signals. It is shown that the implementation is
based on the one for streams of Dirac pulses, thus making the
new research reproducible as well.

Index Terms— Sampling, signals with nite rate of inno-
vation, reproducible research, theory, applications.

1. INTRODUCTION

Reproducible research was rst baptised as literate program-
ming[1] by Donald Knuth in 1984, which he de ned as a
robust and user friendly style of writing which combines a
programming language with a documentation language. In
1995, Donoho et al. [2] de ned reproducible research such
that all the code underlying the gures and the tables in a re-
search publication be made available together with documen-
tation of both the tools and the environment and nally the
latter would be accessible through the internet with anony-
mous access. A system called ReDoc [3] was established by
Claerbout in Stanford in order for all research publications
and books originating from his group to be completely repro-
ducible. The interest in reproducible research in signal pro-
cessing was revitalized in a brief note by Barni and Perez [4].
The advantages of reproducible research are numerous.

For instance, young researchers, novel to a research eld,
can reap the bene ts of the ndings from their peers. Repro-
ducible research enables more people to work on the same re-
search topic as data and experiments can be shared and there-

fore allowing to progress at a faster pace. Finally collabora-
tions become easier between research groups. The ipside to
reproducible research is that it may affect the creativity of a
researcher. Furthermore, it may raise issues with respect to
intellectual property and patents.
In this paper, reproducible research is discussed in the

context of sampling theory for signals with a nite rate of
innovation as described in [5]. These signals have a paramet-
ric representation and contain a nite number of degrees of
freedom. The sampling theory for signals with nite rate of
innovation began with the ”simple” problem of nding the
transition or ”innovation” points of a bilevel signal. This was
achieved by solving a system of linear equations obtained
from the inner products between the bilevel signal and a box
sampling kernel. When the transition points were too close
apart, a hat sampling kernel was used in the inner product and
the solution was obtained by solving a quadratic system of
equations, and so forth. By differentiating the bilevel signal,
it was noticed that the transition or innovation points were
described by a stream of Dirac pulses. Therefore the prob-
lem was reduced to exactly reconstructing a stream of Dirac
pulses from the set of samples obtained from the inner prod-
ucts. Since any piecewise polynomial signal of degree R can
be obtained by integrating R + 1-times the stream of Dirac
pulses, this would lead to a solution to the original problem.
The interest in sampling and reconstructing stream of Dirac

pulses and piecewise polynomial signals lies in the fact that
these are not bandlimited signals and the usual Kotelnikov-
Whittaker-Shannon[6] sampling theorem does not apply. Many
researchers have gained keen interest for the theory of signals
with nite rate of innovation [7], [8], [9],[10] as these sig-
nals are found in a wide range of applications, for instance, in
communication and biomedical systems.
This paper is organised as follows: Section 2 presents the

solution to the problem on sampling and exact reconstruc-
tion of stream of Dirac pulses which sets the foundation for
Section 3 on sampling and exact reconstruction of piecewise
polynomial signals. The focus will be more on the practi-
cal aspects of the sampling theory, so as to accompany the
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previously published papers [5], [11] thus contributing to re-
producible research. Section 4 will present two extensions of
the theory with respective applications and nally conclusions
are drawn in Section 5.

2. THE FOUNDATION: SAMPLING AND EXACT
RECONSTRUCTION OF PERIODIC STREAMS OF

DIRAC PULSES

Let us begin by de ning the τ -periodic signal, xD(t), which is
a stream ofK weighted Dirac pulses

xD(t) =
∑
n∈Z

cn δ(t− tn) (1)

where tn+K = tn + τ and cn+K = cn

=
K−1∑
k=0

ck

∑
n∈Z

δ(t− tk − nτ)

=
K−1∑
k=0

ck
1
τ

∑
m∈Z

ei(2πm(t−tk)/τ) (2)

from Poisson’s summation Formula
=

∑
m∈Z

XD[m] ei2πmt/τ (3)

where

XD[m] =
1
τ

∫ τ

0

xD(t)e−i 2πmt
τ dt =

1
τ

K−1∑
k=0

ck e−i
2πmtk

τ , m ∈ Z

(4)
are the corresponding continuous-time Fourier series (CTFS)
coef cients which completely de ne the periodic signal xD(t).
From Eq. (4), the number of degrees of freedom, in one pe-
riod τ , is K from the locations {tk}k=0,...,K−1 and K from
the weights {ck}k=0,...,K−1 therefore the rate of innovation
of xD(t) is ρ = 2K/τ .

Theorem 1 Consider a τ−periodic stream of K weighted
Dirac pulses xD(t) as de ned in Eq. (1) with rate of inno-
vation ρ = 2K

τ . Consider a sinc
1 sampling kernel hB(t) =

B sinc(Bt) with bandwidth 2Bπ where B is greater than or
equal to the rate of innovation ρ, B ≥ ρ. If the lowpass
ltered signal, y(t) = (hB ∗ xD)(t) is sampled at N uni-
form locations t = nT, n = 0, . . . , N − 1, where T = τ

N ,
N ≥ 2M + 1 and M = �Bτ

2 �, then the samples of the uni-
form set

y(nT ) = yn =< hB(t− nT ), xD(t) >, n = 0, . . . , N − 1
(5)

where < ·, · > denotes the inner product2, are suf cient to
perfectly reconstruct xD(t).

1The sinc de nition used here is sinc(t) = sin(πt)/πt.
2Note that the inner product is de ned by < f(t), g(t) >=

∞∫
−∞

f(t)g∗(t) dt.

The proof of the theorem is given in [11]. Here, instead, we
will show the step by step implementation and the Matlab
code can be found in [12]. There are three steps involved:
rst we need to generate the signal, second we need to im-
plement the sampling procedure and third the reconstruction
method.

2.1. Generation of a periodic stream of Dirac pulses

For some research problems where data is generated randomly,
the initial parameters as well as the generated data must be
saved in a data le in order to reproduce the exact gures as
in the published paper. Therefore even if the programming
code is written in a user friendly manner it does not necessar-
ily imply that a research paper is reproducible which is one of
the problems faced when attempting to reproduce the gures
in [5]. Reproducible research is feasible if one starts off with
the correct frame of mind.
First the period and the number of Dirac pulses need to

be xed. The period of the signal is assumed to be a posi-
tive integer for discrete-time signals and a positive real value
which may be normalised and thus vary between 0 and 1 for
continuous-time signals. Then the locations and the weights
of the Dirac pulses are generated according to a probability
distribution. Thus after the initialisation and generation step
we have the following parameters:

1. τ andK are xed integers and represent the period and
the number of Dirac pulses, respectively.

2. tk, k = 0, . . . , K − 1, represent the locations of the
Diracs and are randomly generated following a unifom
distribution such that
0 ≤ tk−1 < tk ≤ τ .

3. ck, k = 0, . . . , K−1 are the weights of the Dirac pulses
located at tk and are randomly generated following a
Normal(0,1) distribution.

4. ρ = 2K
τ is the rate of innovation of the stream of Dirac

pulses.

2.2. Sampling a periodic stream of Dirac pulses

In the sampling step, we need to rst determine the sampling
parameters according to the conditions in Theorem 1 and then
calculate the uniform sample set of values:

1. TakeB = ρ = 2K
τ the bandwidth parameter of the sinc

sampling kernel, hB(t) and calculateM = �Bτ
2 � = K.

2. Take the number of samplesN ≥ 2M +1 such that the
sampling interval T = τ/N is an integer.

3. Calculate the sample values from the inner products
yn =< hB(t− nT ), xD(t) >,n = 0, . . . , N − 1.
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2.3. Reconstruction of a periodic stream of Dirac pulses

There are two main parts in the reconstruction method. First,
from the N samples yn we need to determine at least 2M
spectral values XD[m],m = −M, . . . , M . The second step
consists in determining the annihilating lter coef cientsA[m]
where calculating the roots of the Z−transform will lead to
the locations of the Dirac pulses. Finally, the locations to-
gether with the M spectral coef cients will determine the
weights of the Dirac pulses. The reconstruction procedure
is as follows:

1. Determine XD[m],m = −M, . . . , M by solving the
following system of equations

yn =
M∑

m=−M

XD[m] ei 2πmn
N , n = 0, . . . , N − 1.

2. Formulate a Toeplitz matrix with the spectral coef -
cientsXD[m],m = −M, . . . , M

XToep =

⎡
⎢⎢⎢⎣

XD[0] XD[−1] · · · XD[−M ]
XD[1] XD[0] · · · XD[−(M − 1)]

. . .
XD[M ] XD[M − 1] · · · XD[0]

⎤
⎥⎥⎥⎦.

3. Find the lter coef cientsA = [A[0], . . . , A[M ]]T that
will annihilate the spectral coef cients, that is, by solv-
ing the following system of equationsXToep ·A = 0.

4. Find the roots of the polynomial made up of the an-
nihilating lter coef cients A = [A[0], . . . , A[M ]]T .
These correspond to uk = e−i

2πtk
τ , k = 0, . . . , M − 1

which leads to the locations tk, k = 0, . . . , M − 1 of
the Diracs.

5. Find the weights ck, k = 0, . . . , M − 1 of the Dirac
pulses by solving the following system ofM equations

XD[m] = 1
τ

M−1∑
k=0

ck um
k ,m = 0, . . . , M − 1

For the continuous-time case the errors involved in the
root nding will be more permissible than those for the discrete-
time case.

3. BUILDING ON THE FOUNDATION: SAMPLING
AND EXACT RECONSTRUCTION OF PERIODIC

PIECEWISE POLYNOMIAL SIGNALS

Reproducible research for streams of Dirac pulses will facil-
itate the development of the programming code for the sam-
pling and exact reconstruction of piecewise polynomial sig-
nals.
Consider a periodic piecewise polynomial signal x(t)with

K pieces of degree R which is obtained by integrating R + 1
times a periodic stream of Dirac pulses xD(t). By differentiat-
ingR+1 times the given piecewise polynomial signal we ob-
tain a stream of (R + 1)K Diracs, that is, xD(t) = x(R+1)(t).

Therefore the degrees of freedom are (R + 1)K from the lo-
cations and (R+1)K from the weights, thus the rate of inno-
vation is ρ = 2(R+1)K

τ .
The sampling stage remains the same except for the value

of B = ρ = 2(R+1)K
τ and thus accordingly M = �Bτ

2 � =
(R + 1)K. Next the samples are obtained by taking the in-
nerproducts between the sampling kernel and the piecewise
polynomial signal, that is, yn =< hB(t − nT ), x(t) >,n =
0, . . . , N − 1, where N ≥ 2M + 1 such that T = τ/N is an
integer value.
In the reconstruction stage, Step 1 gives the 2M +1 spec-

tral components X[m] of the piecewise polynomial signal,
from which we compute the 2M + 1 spectral components of
the periodic stream of Diracs according to the following ex-
pression X(R+1)[m] = XD[m] = (i2πm/τ)R+1 X[m],m ∈
[−M,M ]. The next steps are the same till Step 5 which will
give the stream of Diracs and thus by integrating (R+1) times
the stream of Dirac pulses, the piecewise polynomial signal is
recovered.

4. EXTENDED THEORY AND APPLICATIONS

By adopting a reproducible research frame of mind, the above
sampling theory can be extended to signals that are the sums
of bandlimited signals with stream of Dirac pulses [11] and
the sums of bandlimited signals with piecewise polynomials
[13].

4.1. Bandlimited signals with additive shotnoise

Bandlimited signals with additive shot noise are modeled as
the sum of a bandlimited signal with a stream of Dirac pulses.
In Section 2 it was shown that a periodic stream of K Dirac
pulses can be perfectly reconstructed from 2K contiguous
CTFS coef cients that were obtained from a uniform set of
samples of the lowpass ltered approximation of the stream of
Dirac pulses. Therefore based on the foundation, a sampling
and exact reconstruction method is developed for bandlimited
signals with additive shot noise.
Consider a τ -periodic signal, x(t), de ned as the sum of

a τ -periodic L-bandlimited signal, xBL(t), with a τ -periodic
stream ofK Dirac pulses xD(t), that is, x(t) = xBL(t)+xD(t),
where an L-bandlimited signal xBL(t) is such that its CTFS
XBL[m] = 0,∀m 	∈ [−L,L] and the stream ofK Dirac pulses,
xD(t), is de ned in Eq. (1). The rate of innovation is given by
ρ = 2L+1+2K

τ where (2L+1)/τ and 2K/τ are the number of
degrees of freedom of the bandlimited signal and the stream
ofK Dirac pulses, respectively.
In the sampling step, we take B = 2(L+2K)

τ ≥ ρ thus
M = �Bτ

2 � = L + 2K and the samples are yn =< hB(t −
nT ), x(t) >,n = 0, . . . , N − 1, where N ≥ 2M + 1 such
that T = τ/N is an integer value.
As for the reconstruction, similar to Section 2 the ban-

dlimited signal with additive shot noise, x(t), will be recon-
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structed from a contiguous set of its CTFS coef cients,X[m],m ∈
[−M,M ] withM = L + 2K de ned by

X[m] =
{

XBL[m] + XD[m] ifm ∈ [−L, L]
XD[m] ifm 	∈ [−L,L] . (6)

Recall that the periodic stream of K Dirac pulses xD(t) is
perfectly recovered from any 2K contiguous frequency val-
uesXD[m], thus from Equation (6) takeXD[m] = X[m],m ∈
[L + 1, L + 2K] and reconstruct the stream of Diracs fol-
lowing the steps in Section 2.3. Finally, the bandlimited sig-
nal is obtained by the CTFS coef cients XBL[m] = X[m] −
XD[m],m ∈ [−L, L] and then calculating the inverse CTFS.
Removing shotnoise from an old record is an example ap-

plication of the sampling and exact reconstruction of bandlim-
ited signals with additive shot noise. A reproducible research
webpage containing the programming codes can be down-
loaded from [12].

4.2. Sum of Bandlimited signals with piecewise polyno-
mial

By combining the methods in Section 3 and Section 4.1 the
sampling and reconstruction of the sum of a bandlimited sig-
nal with a piecewise polynomial signal was developed. These
types of signals can be used to model electrocardiogram sig-
nals which typically contain three parts: P wave, QRS com-
plex, and T wave. In order to preserve the diagnostic in-
formation of the ECG signal, the QRS complex has to be
well preserved and is modelled as a piecewise linear signal.
By subtracting the QRS complex from the original signal,
the remaining part can be modelled as a bandlimited signal.
Sampling theory on ECG signals was investigated in [13] in
the context of a compression application via reproducible re-
search.

5. CONCLUSIONS

Reproducible research is not about not reinventing the wheel
but about showing how the wheel was built and inspire the re-
searcher to invent a better and stronger wheel. Reproducible
research can go beyond providing code which enables to gen-
erate the gures found in a research paper. For instance by
creating a Graphic User Interface, as in [14], it enables the
researcher to build intuition for the novel research area.
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