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ABSTRACT
This paper describes two exible frameworks of voice conversion
(VC), i.e., one-to-many VC and many-to-one VC. One-to-many VC
realizes the conversion from a user’s voice as a source to arbitrary
target speakers’ ones and many-to-one VC realizes the conversion
vice versa. We apply eigenvoice conversion (EVC) to both VC frame-
works. Using multiple parallel data sets consisting of utterance-
pairs of the user and multiple pre-stored speakers, an eigenvoice
Gaussian mixture model (EV-GMM) is trained in advance. Unsu-
pervised adaptation of the EV-GMM is available to construct the
conversion model for arbitrary target speakers in one-to-many VC
or arbitrary source speakers in many-to-one VC using only a small
amount of their speech data. Results of various experimental evalua-
tions demonstrate the effectiveness of the proposed VC frameworks.

Index Terms— Speech synthesis, voice conversion, eigenvoice,
one-to-many, many-to-one

1. INTRODUCTION

Voice conversion (VC) is a technique for converting a certain speaker’s
voice into another speaker’s voice [1]. One of typical VC frame-
works is a statistical approach using a conversion model such as a
Gaussian mixture model (GMM) [2] for representing joint probabil-
ity density of source and target acoustics [3]. The conversion model
is basically trained in advance using a parallel data set consisting of
utterance-pairs of the source and the target speakers. It successfully
converts any speech sample of the source speaker into that of the
target speaker. It is no doubtful that VC is a useful technique and
there are a lot of applications of using it. However, it is doubtful
whether the VC framework requiring parallel data is acceptable for
real users. It is more convenient to enable the user to convert own
voices into the desired voices even if he doesn’t obtain any speech
samples of the target. VC from arbitrary speakers into the user also
seems useful for generating various languages as if uttered by the
user. In order to realize handy VC applications, it is essential to
make the VC framework more exible.

One promising approach for exibly constructing the conver-
sion model for the desired speaker-pair is to exploit voices of other
speakers as a prior knowledge. Mouchtaris et al. [4] proposed a non-
parallel training method based on maximum likelihood constrained
adaptation of a GMM trained with an existing parallel data set of a
different speaker-pair. Iwahashi and Sagisaka [5] proposed a conver-
sion method based on speaker interpolation with multiple pre-stored
speakers’ voices. By integrating those two ideas such as adapting the
conversion model and using many pre-stored speaker’s voices into a
uni ed VC framework, Toda et al. [6] proposed eigenvoice conver-
sion (EVC) based on eigenvoices that was originally proposed as a
speaker adaptation technique in speech recognition [7].

This paper describes one-to-many VC and many-to-one VC as
exible VC frameworks. One-to-many VC realizes the conversion
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from a source speaker’s voice into arbitrary target speakers’ ones
and many-to-one VC realizes the conversion vice versa. The effec-
tiveness of EVC in one-to-many VC has been reported in [6]. It is
expected that EVC works in many-to-one VC as well. This paper ap-
plies EVC into not only one-to-many VC but also many-to-one VC.
Various experimental evaluations are conducted for demonstrating
the effectiveness of the proposed VC frameworks based on EVC.

The paper is organized as follows. Section 2 describes frame-
works of one-to-many VC and many-to-one VC. Section 3 describes
EVC. Section 4 describes experimental evaluations. Finally, we
summarize this paper in Section 5.

2. ONE-TO-MANY VC ANDMANY-TO-ONE VC

Frameworks of one-to-many VC and many-to-one VC consist of two
main processes, i.e., 1) training and 2) adaptation and conversion.
The training process employs multiple parallel data sets consisting
of utterance-pairs of the source speaker, i.e., a user and many pre-
stored target speakers in one-to-many VC or vice versa in many-to-
one VC. Namely, those frameworks assume that the user utters a
prepared sentence set only once. Voices of many pre-stored speak-
ers uttering the same sentence set need to be recorded in advance.
Around 50 phonetically balanced sentences would work properly as
the sentence set. Those parallel data sets cause the conversion model
capturing the correlation between the user’s voice and many speak-
ers’ voices, which is effectively used as a prior knowledge in the
model adaptation.

The conversion model is adapted to arbitrary target speakers in
one-to-many VC or arbitrary source speakers in many-to-one VC
using only their speech data without any linguistic restrictions. And
then, VC is performed with the adapted conversion model. There-
fore, we don’t have to newly prepare a parallel data set between the
user and the arbitrary speakers. Moreover, the amount of adaptation
data is considerably reduced by exploiting the prior knowledge.

3. EIGENVOICE CONVERSION (EVC)

This section describes a framework of EVC in many-to-one VC. It is
straightforward to apply EVC to one-to-many VC by replacing the
source and the target each other as described in [6].

3.1. Eigenvoice GMM (EV-GMM)

We employ 2D-dimensional acoustic features Xt =
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where N(x;—,Σ) shows the normal distribution with a mean vec-
tor — and a covariance matrix Σ. The ith mixture weight is αi.
The total number of mixtures isM . In many-to-one VC, the source
mean vector for the ith mixture is represented as a linear combina-
tion of a bias vector b

(X)
i (0) and representative vectors B

(X)
i =

[b
(X)
i (1), · · · , b

(X)
i (J)]. The number of representative vectors is

J . The source speaker individuality is controlled with only the J-
dimensional weight vector w = [w(1), · · · , w(J)]�. This paper
employs diagonal covariance matrices.

3.2. Training of EV-GMM

Firstly, a source independent GMM is trained using all of the mul-
tiple parallel data sets simultaneously. And then, each source de-
pendent GMM is trained by updating only source mean vectors of
the source independent GMM using each of the multiple parallel
data sets. As a source dependent parameter, a supervector for each
pre-stored source speaker is constructed by concatenating the source
mean vectors of each of the source dependent GMMs. The bias and
representative vectors, i.e., eigenvectors are determined with princi-
pal component analysis (PCA) for all source speakers’ supervectors.
Finally, the EV-GMM is constructed with the resulting bias and rep-
resentative vectors and parameters of the source independent GMM.

It is essential to model phonemic features and speaker dependent
features separately with the EV-GMM. In order to do it, the corre-
spondence of each mixture into a phonemic space should be the same
in the every source dependent GMM. Because the source dependent
GMMs are trained while xing probability density function on the
target space as mentioned above, the correspondences between indi-
vidual mixtures and the target phonemic spaces are kept consistent
in all of the GMMs. Moreover, because the phonemic space of the
target is aligned to the same phonemic space of the source due to
parallel data, the every GMM has the consistent correspondences
of individual mixtures into both the source and the target phonemic
spaces. Consequently, a subspace representing speaker dependent
features is constructed with the resulting supervectors of which vari-
ations capture not phonemic differences but differences of the source
speaker individuality.

3.3. Unsupervised Adaptation of EV-GMM

The EV-GMM is adapted for arbitrary speakers by estimating the
optimum weight vector for given their speech samples without any
linguistic information. For example, in many-to-one VC, the weight
vector is estimated so that a likelihood of the marginal distribution
for a time sequence of the given source featuresX(tar) is maximized
[6] as follows:

ŵ = argmax
R

p(X(tar), Y |–(EV ))dY .

Because the probability density is modeled with a GMM, EM al-
gorithm is used for the estimation. This paper employs the speaker
independent GMM for performing the rst E-step process.

In one-to-many VC, EVC realizes the converted speech with
various voice characteristics by manually manipulating the weight
vector. It is possible to realize the weight vector modifying various
speech acoustics simultaneously by using supervectors including tar-
get dependent parameters of the conversion models for the individual
speech acoustics.
3.4. Conversion with EV-GMM

The spectral conversion is straightforwardly performed with the adapted
EV-GMM. This paper employs the conversion method based onmax-
imum likelihood estimation considering dynamic features [8].

4. EXPERIMENTAL EVALUATIONS

4.1. Experimental conditions

In order to train EV-GMMs in one-to-many VC and many-to-one
VC, we used 160 speakers consisting of 80 male and 80 female
speakers as the pre-stored speakers. These speakers were included
in Japanese Newspaper Article Sentences (JNAS) database [9]. Each
of them uttered a set of phonetically balanced 50 sentences. We used
a male speaker not included in JNAS as the source speaker in one-
to-many VC or the target speaker in many-to-one VC, who uttered
the same sentence sets as uttered by the pre-stored speakers. More
detail conditions are described in [6].

In order to evaluate the performance of unsupervised adaptation
of the EV-GMM, we compared EVC with the conventional VC. We
used ten test speakers consisting of ve male and ve female speak-
ers who were not included in the pre-stored speakers. Those speak-
ers uttered 53 sentences that were also not included in the pre-stored
data sets. The number of adaptation sentences was varied from 1 to
32. The remaining 21 sentences were used for evaluations. The con-
ventional VC trained GMMs for the conversion between individual
speaker-pairs using their parallel training data sets.

In order to demonstrate the effectiveness of the manual weight
control in one-to-many VC, we investigated changes of the converted
parameters when varying the weight setting. For controlling various
speech acoustics, supervectors were constructed by concatenating
not only target mean vectors of GMMs for the spectral conversion
but also various parameters such as target mean vectors of GMMs
for the aperiodic conversion, a mean vector of global variance (GV)
of spectral features [8], and parameters for the F0 conversion.

We used mel-cepstrum as a spectral feature. The rst through
24th mel-cepstral coef cients were extracted from 16 kHz sampling
speech data. The STRAIGHT analysis method [10] was employed
for the spectral extraction. A simple linear conversion with means
and standard deviations of log-scaled F0 of the source and the target
speakers was employed in the F0 conversion.

4.2. Objective evaluations
4.2.1. Unsupervised adaptation in one-to-many VC

Figure 1 shows mel-cepstral distortion when varying the number of
target adaptation sentences and the number of representative vec-
tors of the EV-GMM. When the number of representative vectors
is small, an increase of the number of adaptation sentences doesn’t
cause any improvements of the spectral conversion-accuracy due to
the small number of free parameters to be adapted. The conversion-
accuracy is improved by increasing the number of representative
vectors. Although it might be possible that the conversion-accuracy
is degraded due to the over-training when using a large number of
representative vectors and a small number of adaptation sentences,
such a trend is not observed even if using all of representative vec-
tors, i.e., 159 vectors. Therefore, all of representative vectors were
used in the following experiments. When using a larger number
of pre-stored speakers, it seems necessary to determine the number
of representative vectors appropriately according to the amount of
adaptation data because the number of available representative vec-
tors also increases.

Figure 2 shows mel-cepstral distortion as a function of the num-
ber of mixtures when varying the number of target adaptation sen-
tences (or training sentence-pairs in the conventional VC). It also
shows a result of the conversion with the target independent GMM
(“TI-GMM”). In conventional VC, the conversion-accuracy is im-
proved by increasing the number of mixtures because the joint prob-
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Fig. 1. Mel-cepstral distortion on each combination of the number of
representative vectors and the number of target adaptation sentences
in one-to-many VC. The number of mixtures is set to 128.

ability density is accurately represented with more complex models.
However, by further increasing it, the conversion-accuracy starts to
be degraded due to the over-training. Consequently, as the amount
of training data is larger, the optimum number of mixtures increases
and the conversion-accuracy is improved.

One-to-many VC is a conversion process from a single input
feature into multiple output features. It is reasonable that the target
independent GMM doesn’t work because that model just converts
the source features into the average features among pre-stored target
speakers.

EVC works much better than the conventional VC when us-
ing the small amount of target adaptation data because information
of pre-stored target speakers is effectively used as a prior knowl-
edge. The conversion-accuracy is improved by increasing the num-
ber of mixtures. The over-training effect is not observed even if
using 512 mixtures because the amount of training data of the EV-
GMM is enough large. Although a larger amount of adaptation
data also causes improvements of the conversion-accuracy, those im-
provements are not so large when increasing over two adaptation
sentences because of the limited number of adapted parameters.

4.2.2. Unsupervised adaptation in many-to-one VC

Figure 3 shows mel-cepstral distortion as a function of the number
of mixtures in many-to-one VC when varying the number of source
adaptation sentences (or training sentence-pairs). It also shows a
result of the conversion with the source independent GMM (“SI-
GMM”). The conventional VC has the same tendencies as shown in
one-to-many VC.

We can observe completely different results between many-to-
one VC and one-to-many VC in the speaker independent GMMs,
i.e., TI-GMM and SI-GMM. The source independent GMM works
as the conversion model in many-to-one VC. Many-to-one VC is
the conversion process from multiple input features into a single
output feature. Therefore, the conversion reasonably works if an
input feature space including characteristics of various speakers is
modeled precisely. In fact, the conversion-accuracy is improved by
increasing the number of mixtures because a more complex model
is effectively used for representing feature spaces of various source
speakers. However, different speakers have different acoustics for
the same phonemes in general. Therefore, even if acoustic features
are similar, they don’t always capture the same phonemic features.
The source independent GMM may cause the conversion between
different phonemic spaces.
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Fig. 2. Mel-cepstral distortion as a function of the number of mix-
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adaptation sentences (or training sentence-pairs).
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Fig. 3. Mel-cepstral distortion as a function of the number of mix-
tures in many-to-one VC. We show mean distortions over 10 source
speakers. The number in each bracket shows the number of source
adaptation sentences (or training sentence-pairs).

On the other hand, the EV-GMM separately models phonemic
features and speaker dependent features on the acoustic space with
the subspace ef ciently representing only the speaker individuality.
Because it is adapted to an arbitrary source speaker while keeping a
correspondence of phonemic spaces between the source and the tar-
get features, the conversion-accuracy is better than that of the source
independent GMM. As described in one-to-many VC, EVC in many-
to-one VC also works much better than the conventional VC when
using a small amount of the source adaptation data.

4.2.3. Manual weight control in one-to-many VC

Figure 4 shows an example of acoustics of an input voice and con-
verted voices when modifying only the rst coef cient of the weight
vector while keeping the others zero. Every acoustic feature effec-
tively changes by manipulating only the single parameter. Speci -
cally, an increase of the rst weight coef cient causes a higher F0

contour and formant shifts toward higher frequencies. Results of
an informal listening test showed that the rst representative vector
seems to capture gender information of the target speakers. This
trend has also been found in HMM-based speech synthesis based on
eigenvoices [11].
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Fig. 4. An example of waveforms, F0 contours, and spectrograms of individual voices at a sentence fragment “n e Q k i n o y oo n a m o n o
g a m i n a g i r u.” Only the rst weight coef cient w(1) is manually varied in one-to-many VC, where σ is the rst principal component.

4.3. Subjective evaluations

We conducted an opinion test and an XAB test for evaluating the
performance of EVC compared with the conventional VC in one-to-
many VC. In the opinion test, listeners evaluated speech quality of
the converted voices using a 5-point scale (5: excellent, 4: good, 3:
fair, 2: poor, 1: bad). In the XAB test (X: target speech, A and B:
converted voices with EVC and the conventional VC), listeners were
asked which converted speech sounded more similar to the target
speech. The number of listeners was ve. The number of mixtures
of the EV-GMM was set to 512. On the other hand, the number of
mixtures in the conventional VC was set to the optimum value for
each target speaker and the each number of training sentences in the
sense of the spectral conversion-accuracy.

The result of the opinion test is shown in Fig. 5. EVC out-
performs the conventional VC when using the small amount of tar-
get adaptation data. In the conventional VC, speech quality is ob-
viously improved by increasing the amount of training data. EVC
successfully synthesizes the converted speech with equal quality to
that of the conventional VC even if using 32 target sentences. Note
that speech quality of the converted voices is insuf cient because we
didn’t use the conversion method considering GV [8] in this test. It
is expected to make MOS around 1.0 larger by considering GV as
reported in [8].

The result of the preference test is also shown in Fig. 5. It is
observed that EVC outperforms the conventional VC when using 2
target sentences. Even if using 16 target sentences, the performance
of EVC is comparable to that of the conventional VC. Although the
conversion-accuracy of EVC is slightly inferior to that of the con-
ventional VC when using 32 target sentences, EVC still has an ad-
vantage of allowing unsupervised adaptation.

5. CONCLUSIONS

This paper described exible frameworks of voice conversion (VC)
such as one-to-many VC and many-to-one VC. Eigenvoice conver-
sion (EVC) was applied to both frameworks. Results of various
experimental evaluations demonstrated the effectiveness of the pro-
posed VC frameworks. We will apply EVC to many-to-many VC.
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