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ABSTRACT

This paper proposes a new method to calculate the cepstral

coefficients for an HMM-based synthesizer. It consists in a

direct maximization of the log-likelihood function of a Gaus-

sian mixture model using a gradient ascent algorithm. The

method permits to integrate efficiently the Global Variance

factor with a Gaussian mixture acoustic model.The percep-

tual experiments confirmed that these two factors produce

significant improvements on the speech quality, which are in-

dependent from each other. By using the proposed method,

it is possible to get the benefits of both factors. This paper

also proposes a 2-class model for the Global Variance that

discriminates between consonants and vowels. Such 2-class

Global Variance model produces more stable cepstral coeffi-

cients than the single-class one.

Index Terms— HMM-based speech synthesis, Gaussian

mixture , Global Variance, polyglot.

1. INTRODUCTION

The advantages of the HMM-based synthesis algorithm against

concatenative synthesis methods are the simplicity of its im-

plementation, the smoothness of the voice it produces and

its flexibility to generate new voices. On the other hand, its

main disadvantage has always been its audio quality, equiv-

alent to that of a vocoder. Several modifications have been

proposed to improve the quality of the HMM-based synthe-

sizer. Roughly, they can be divided into those that improve

the source excitation model and those that improve the mod-

eling of the F0 and vocal tract coefficients, such as Hidden

semi-Markov Models and Trajectory Models. The parameter

generation algorithm however, remained unaltered. It con-

sisted in maximizing the total log-likelihood of a sequence

of HMMs with respect to the observation vector, consider-

ing the constraints defined by the relationship between the

dynamic and static features of that observation vector. Re-

cently, a modification to this algorithm was proposed by Toda
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and Tokuda [5]. They added to the parameter generation algo-

rithm a new constraint that takes in consideration the variance

of the static part of the observation vector along the whole ut-

terance. The addition of this factor improves greatly the qual-

ity of the synthetic speech. However, since it introduces a

quadratic term, the maximization cannot be solved efficiently

using the standard synthesis algorithms [6] for models using

Gaussian mixtures.

2. STANDARD ALGORITHM

The standard HMM-based speech synthesis algorithm consist

in finding the observation vector O and the sequence of states

q that maximize the output probability of a hidden Markov

model λ, which represents the phones of the sentence to be

synthesized. This probability can be decomposed into two

terms

P [q,O|λ] = P [q|λ] · P [O|q, λ] (1)

Therefore, its maximization can be done in two steps, first

with respect to the states sequence q, and second with respect

to the observation vector O, conditioned on the already cal-

culated q.

2.1. Determination of the sequence of states

The typical structure of the HMMs used for speech synthesis

is left-to-right with no skip. Consequently, determining the

states sequence is equivalent to finding the duration of each

state ds, i.e., the number of frames assigned to each state. The

state sequence q = {q1, q2, . . . , qS} is the one that maximizes

log P (q|λ, T ) =
S∑

s=1

log(Ps(ds)) (2)

for the model λ of the sentence to be synthesized, given the

constraint

T =
S∑

s=1

ds (3)

where T is the total number of frames assigned to λ, S the

total number of states, ds the number of frames assigned to
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the state s and Ps(ds) is the probability of staying in state

qs during ds frames. The duration probability can be defined

by self-transition probabilities Ps or by density functions. In

our implementation, we used the first option together with

an external module that estimates the duration Tp assigned to

each phone p of the sentence [1]. For this purpose, each sub-

model λp that corresponds to a phone p is considered as an

independent model with total duration Tp. If the proportions

among the durations ds of each state qs ∈ λp are assumed to

be independent of Tp, they can be calculated as:

ds = Tp
1/(1 − Ps)∑

qs∈λp
1/(1 − Ps)

(4)

2.2. Estimation of the observation vector

For a fixed sequence of states q, the probability P [O|q, λ]
depends only on the static features vector c as:

log P [O|q, λ] =
T∑

t=1

log bst
(ot) + Const (5)

where T is the total number of frames, bst
(ot) is the output

probability of the state s at frame t for the observation vec-

tor ot = [c�t ,Δc�t ]� and Const is a constant that represents

the log-likelihood of the state transition and initial state prob-

abilities. In order to obtain a smooth transition of the synthe-

sized parameters from one frame to another, the relationship

between static c and dynamic features Δc:

Δct =
L∑

l=−L

ω(l)ct+l (6)

have to be considered, with ω the weighting vector. If the out-

put probabilities bst
(ot) are modeled by single Gaussians, the

derivate of Eq.(5) with respect to c considering the constraints

of Eq.(6) produces the linear equation:

∂ log P [O|q, λ]
∂c

= 2W�Σ−1(Wc − μ) (7)

where Σ is a matrix formed by the covariance matrices of the

states assigned to each frame t, μ is the vector of mean values

of the states assigned to each frame, and W is a transforma-

tion matrix that summarizes Eq.(6) so that O = Wc.

In the case that the output probabilities bst
(ot) are mod-

eled by a mixture of Mst multivariate Gaussians distributions,

it is common to use the approximation:

log bs(o) = log
(∑Ms

m=1 κm
s Nm

s (o)
)

� log max(κ1
sN 1

s (o), . . . , κMs
s NMs

s (o)) (8)

In this way, each Gaussian mixture is equivalent to a sub-

state with the mixture weight as transition probability. For

this approximation, Tokuda et al. proposed several algorithms

that maximize Eq.(5) in a time-recursive manner [6].

3. GLOBAL VARIANCE

One of the problems of HMM-based speech synthesis is that

the variances of the generated parameters are much lower than

the variances of the original ones. As a result, the synthetic

speech sounds usually over-smooth. Recently, an effective

method to alleviate this problem was proposed [5]. It consists

in considering not only the constraints between dynamic and

static features, but also the constraints given by the probabil-

ity of the Global Variance (GV) of the static features. After

adding the GV constraint to Eq.(5), the function to be maxi-

mized becomes:

log P [O|q, λ, λGV ] =
T∑

t=1

log bst(ot) + log P [v(c), λGV ]

(9)

where λGV is the probability model of the Global Variance

v(c) which is defined as

v(c) = [v1, · · · , vd, · · · , vD]� (10)

vd =
1
T

T∑
t=1

(cd
t )

2 −
(∑T

t=1 cd
t

T

)2

(11)

4. GRADIENT ASCENDENT BASED ALGORITHM

If the Global Variance probability is modeled by a single Gaus-

sian distribution with mean value μv and covariance Σvv , the

derivate of its log-likelihood with respect to the d dimension

of the static feature vector at time t, cd
t , is

∂ log P [v(c), λGV ]
∂cd

t

= − 2
T

∑D
r=1 sv(r, d)(vd − μv(d))

·
(
cd
t − 1

T

∑T
τ=1 cd

τ

)
(12)

where sv(r, d) is the (r, d)th element of the inverse of the co-

variance matrix Σvv . This derivate is non-linear. Therefore,

the maximization of Eq.(9) has to be solved by means of a

gradient ascent algorithm. For the EM algorithm proposed

in [6], this non-linearity implies that the auxiliary Q-function

has to be maximized with a gradient descent loop at each M-

step, reducing thus the efficiency of this algorithm.

However, if the sequence of states q is determined inde-

pendently of the observation vector O, as described in section

2.1, the approximation of Eq. ( 8) is not needed. This permits

to obtain the vector of static features by directly maximiz-

ing Eq. (9) in a single loop. A direct maximization of Eq.

(5) was first proposed in [4]. However, in that approach the

log-likelihood of each frame was maximized independently

of the neighbor frames. For this reason, although the global

log-likelihood improved after each iteration, the final conver-

gence was not guaranteed.

In this paper we propose a direct maximization of Eq. (9)

based on the gradient ascent algorithm. The convergence to a

local maxima is usually achieved after 20-25 iterations.
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The derivate of Eq.(5) with respect to cd
t is

∂ log P [O|q, λ]
∂cd

t

=
T∑

t=1

1
bst

(ot)
∂bst

(ot)
∂cd

t

=
L∑

l=−L

1
bs(t+l)(o(t+l))

∂bs(t+l)(o(t+l))
∂cd

t

(13)

where 2L is the number of frames considered to calculate the

dynamic features. For diagonal covariance matrices and con-

sidering the constraints given by Eq.(6), the derivate with re-

spect to cd
t of the output observation probability bs(t+l)(o(t+l))

modeled by a mixture of Gaussians is

∂bs(t+l)(o(t+l))
∂cd

t

=
∑Ms(t+l)

m=1

(
κm

s(t+l)

exp(Fm
s(t+l)

(o(t+l)))√
(2π)D|Σm

s(t+l)
|

·∂F
m
s(t+l)

(o(t+l))

∂cd
t

)
(14)

where

Fm
st

(ot) = −1
2
(ot − μm

st
)�(Σm

st
)−1(ot − μm

st
) (15)

Consequently

∂Fm
s(t+l)

(o(t+l))

∂cd
t

= −
(
χ(l)

(cd
t −μm

s(t+l)
(d))

σm
s(t+l)

(d)

+ω(−l)
(Δcd

(t+l)−μm
Δs(t+l)

(d))

σm
Δs(t+l)

(d)

)
(16)

where κm
st

, μm
st

and Σm
st

are the weight, mean and variance of

the m-th Gaussian component Nm
st

of the state s at frame t;
μm

st
(d) and σm

st
(d) are the mean and variance for the d dimen-

sion of the static features of the m-th Gaussian component

at state st; μm
Δst

(d) and σm
Δst

(d) are the mean and variance

for the d dimension of the dynamic features at state st, and

χ(l) = 1 for l = 0 and 0 otherwise.

5. EXPERIMENT

In order to test our approach, we have performed two subjec-

tive evaluations. The first one analyzed the effect of increas-

ing the number of Gaussians in the model, and the second

one the effect of using the GV factor. For the first evaluation,

stimuli generated from speaker-adapted acoustic models with

1, 4 and 16 Gaussian mixtures using the GV term were com-

pared with each other. In the second experiment, stimuli syn-

thesized with and without the GV term from speaker-adapted

models with 4 and 16 Gaussians mixtures were compared.

Both evaluations were conducted using pair tests, where sub-

jects were asked to select the stimuli with overall better speech

quality. For each test, 10 native Japanese subjects evaluated

a set of 15 pairs of stimuli in Japanese, presented in random

order. All the subjects evaluated the same set of pairs.

Since the evaluation was conducted in the framework of

an HMM-based speaker adaptable polyglot synthesizer [2],

average voice polyglot models were trained first with data

from 50 speakers, 10 for each one of the training languages:

Spanish, German, French, Russian and Japanese. These av-

erage models were then adapted to one speaker for each lan-

guage to create the models used in the evaluation. The feature

vector consists of 25 mel-cepstral coefficients and their delta,

calculated from a 16 ms Blackman window with a 5 ms shift.

The training database was GlobalPhone [3].

5.1. Prosody estimation and source excitation

The prosody of the stimuli was generated using the quantifi-

cation method proposed in [1].

The source excitation model is based on the mixed-excitation

algorithm [7]. The source-excitation was trained as a sec-

ond stream of an HMM model, with the first stream being the

Mel-Cepstral coefficients, so that both streams were synchro-

nized. The parameters of the mixed-excitation stream consist

of the noise gain, its delta, the voicing strength of the bands

0-1KHz, 1-2KHz, 2-4KHz and 4-6KHz and their deltas. Af-

ter the training of context-dependent models, each stream was

clustered independently. The 2-streams tied models were then

retrained using a 2-Gaussian mixture for each stream. Finally,

the streams were detached into two independent single stream

tied models. This 2-Gaussian model is the one used later to

synthesize the mixed-excitation parameters. The models with

the Mel-Cepstral stream were further refined incrementing the

number of Gaussians to create the average voice models men-

tioned in the previous section. The synthesis of the mixed-

excitation parameters from the HMM was done in the same

way as for the Mel-cepstral parameters, but without the GV

factor. In the 6-8KHz band, a voicing strength value of half

of the one obtained for the 4-6KHz band was assigned.

5.2. Multi-class Global Variance

As Fig.1 shows, the average GVs of consonants and vowels

are different, especially for low cepstral coefficients, and they

are also different from the total average GVs obtained for a

single-class model. In some informal experiments, it was

found that when the a single-class GV model was applied

to all the phones, the synthesized voice was often unstable,

i.e. screeches were often produced and the voiced seemed to

tremble. By creating a separated GV model for consonants

and vowels, these problems almost completely disappeared.

In general, the application of the GV factor to vowels was

found to produce a stronger improvement of the speech qual-

ity than when applied to consonants. In our implementation,

no GV term was added to the silences.

In some preliminary tests, the GV term was also mod-

eled by a mixture of Gaussians. However, it did not produce

any noticeable improvement over the single Gaussian 2-class

model described above.
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Fig. 1. Logarithm of the mean Global Variance vector: con-

sonants, vowels and total

Fig. 2. General preferences for models with different number

of mixtures

6. RESULTS

The general preferences of the fist subjective evaluation are

shown in Fig.2. As expected, the more Gaussians are used the

more accurate the representation of the vocal tract parameters

and therefore, the higher total preference. However, the im-

provement produced by a higher number of Gaussians tends

to saturate, therefore, the difference between the 16 and the 4

Gaussians model were not significant.

The preferences for models with and without the GV fac-

tor are shown in Fig.3. It can be seen that regardless of the

number of Gaussians in the model, the stimuli synthesized

using the GV term were clearly preferred.

7. CONCLUSIONS

A direct maximization of the log-likelihood function for the

HMM-based synthesis algorithm using a gradient ascent method

was proposed. This approach permits to integrate efficiently

Fig. 3. Preference scores: Standard vs. Global Variance

the Global Variance factor with the usage of Gaussian mixture

models, and to obtain thus the improvements of the speech

quality due to these two factors.
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