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ABSTRACT

While image clustering has many important applications ranging
from personal to web image management, its use is often limited by
the dif culty of extracting reliable semantics from low level image
features. The image clusters can be improved by using features ex-
tracted from image regions rather than the whole image. Region seg-
mentation can be improved in turn, by considering all images within
the same cluster rather than segmenting each image independently.
This observation leads to the uni ed Bayesian framework for image
clustering and segmentation presented in this paper. The experimen-
tal results, reported using several types of visual feature extractors
on a database of web documents containing over 6000 images, illus-
trates a signi cant improvement over existing techniques.

Index Terms— clustering, image segmentation.

1. INTRODUCTION

With the rapid increase in rich multimedia documents containing im-
ages, the need for clustering these documents becomes increasingly
more important. In particular, clustering the results of a web im-
age search can present the user with several semantic categories of
the search and remove some of the unrepresentative results. There
are several approaches to structure the retrieved web image results.
Webseek [1] uses both text and image content to categorize web im-
ages based on a manually set taxonomy. In [2], the authors describe
a hierarchical clustering system of general web images that uses the
visual features to re ne the clusters obtained using text features.
In [3], the authors use Google’s image search to learn object cate-
gories. Intra-class variations due to translation and scaling are taken
into account by extending the probabilistic Latent Semantic Anal-
ysis technique (pLSA) of [4] into Translation and Scale invariant
pLSA (TSI-pLSA). In [5], the authors describe a method for learning
appearance-based models of the object classes in a supervised man-
ner. Each of the nine objects in the database is represented by a his-
togram of words in a visual dictionary. The algorithm determines an
optimally compact dictionary by merging pairs of visual words ob-
tained from manually segmented images. LOCUS [6] learns object
classes using a generative probabilistic model that includes shape
and appearance information. Variations due to deformation, trans-
lation, and scaling are also accounted for in the model. Gaussian
mixture models are popular methods in image clustering [7]. How-
ever, the results of these methods for web image clustering are often
limited due to the large variations in appearance, position and scale
of the objects of interest in web images.

The clustering algorithm described in this paper extends the Gaus-
sian mixture model and increases its exibility in modelling the web
images. First, each of the image clusters is described in turn by
a Gaussian mixture model that captures better the variations in ap-
pearance of the web images. Secondly, the feature vectors used in
clustering are obtained not only from the entire image but also from
a set of image regions that determine a complete image segmenta-
tion . Often image segmentation depends on a set of parameters that
are set beforehand. In our approach the values of the segmentation
parameters are determined to maximize the likelihood of the images
within each cluster. In turn the improved image segmentation re-
gions determine a better set of features for image clustering leading
to an iterative algorithm described in Section 4. The parameters of
the image segmentation and the visual feature extraction techniques
are described in Sections 2 and 3 respectively. The results of the
image clustering algorithm described in this paper are presented in
Section 5.

2. IMAGE SEGMENTATION

In this paper the image regions are obtained using JSEG segmen-
tation algorithm [8]. JSEG starts by determining a set of ”region
seeds” in a color quantized space. The region seeds are determined
by computing a homogeneity score ”J” obtained from image blocks
at different scales. Next, the seeds are grown into larger regions and
are merged based on color histogram similarity measure. The seg-
mented regions can be obtained by varying three parameters. The in-
uence of these parameters on the segmentation results is discussed

below.

1. The quantization parameter quant ∈ [0, 600] determines the
minimum distance between two quantized colors in the im-
age. The larger is the value of the quant parameter, the
coarser is the quantization.

2. The scaling parameter scale controls the size of the image
windows used in determining the region seeds. The smaller
the value of scale parameter, the coarser the obtained seg-
mentation.

3. The region merging parameter merge ∈ [0, 1] determines the
merging threshold between two adjacent regions based on the
distance between their color histograms. The larger m is, the
more regions are merged together.

In order to choose a set of values for the segmentation param-
eters, we randomly picked 36 images out of our database, one for
each category in our database and we conducted the following exper-
iment. We applied the JSEG algorithm to all the test images using
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Fig. 1. The image clustering model

a large set of combinations of the segmentation parameters. Based
on our observations, we decided to set scale = 1 in order to avoid
over segmenting the image. We set quant ∈ {20, 255, 600}, and
merge ∈ {0.4, 0.6, 0.8} that determine 10 possible segmentations
(including the overall image) for each image. Note that the parame-
ter values are spread over the entire range of quant and merge pa-
rameters. This determines a large variety of segmentations of each
image to be used in the image clustering algorithm.

The region based segmentation algorithm described above is com-
pared with a low complexity block segmentation method. In block
segmentation the image is partitioned into Nx and Ny horizontal
and vertical non-overlapping rectangular blocks respectively. In this
paper we consider 10 segmentation con gurations of the image into
(Nx, Ny) = (1,1) corresponding to the whole image, (1,2), (1,3),
(2,1), (2,2) (2,3), (3,1), (3,2), (3,3) and (4,4) uniform non-overlapping
blocks.

3. THE VISUAL FEATURE EXTRACTION

The visual features used in this paper are extracted from each image
block or image region obtained by the previous segmentation algo-
rithms. At rst the content of each image region is captured using
histograms of salient SIFT keypoints [9], a technique similar to that
presented by Csurka et. al. in [10]. In our approach the dimension-
ality of the SIFT points is rst reduced using Principal Component
Analysis (PCA) to dimension 40. Next, a “soft histogram” with 100
bins is computed for all the vectors in each of the image regions ob-
tained as described in the previous section. In our approach the value
of a histogram bin is calculated as:

P (bi) =
∑

j

P (bi|vj)P (vj)

where vj are the set of visual feature vectors uniformly distributed
and P (vj |bi) is determined by a Gaussian density functions with
parameters learned from all visual vectors through the EM algo-
rithm. The SIFT based features described above are compared in
Section 5 to several other image features extraction techniques in-
cluding color moments [11], edge directions [12], wavelet transform
coef cients [13] and the HSV correlograms [14].

4. IMAGE CLUSTERING

The clustering method described in this paper is illustrated by the
Bayesian network in Figure 1. CV is the hidden cluster node that
takes the discrete values c, S is a hidden node with discrete values
s associated with each segmentation con guration and Ms,r is a

hidden node with discrete values m representing the mixture com-
ponent of each cluster corresponding to region r in segmentation
con guration s. The continuous observations nodes are denoted as
v = [v(s)], where v(s) = [v(s,r)] is a sequence of observation vec-
tors corresponding to the regions in the sth segmentation con gura-
tion, r = 1, . . . , Rs, is the index over all regions in an image and
Rs is the number of regions extracted from the image under the sth

segmentation. The observation likelihood is given by

P (v|c) =
∑

s

P (v|s, c)P (s)

where P (v|s, c) =
∏

r P (v(s,r)|s, c) and P (v(s,r)|s, c) is given by
a Gaussian mixture

P (v(s,r)|s, c) =
∑
m

P (m|c)N (v(s,r), μc,m, σc,m)

with mean μc,m and variance σc,m. The parameters of the model are
learned using the EM algorithm described by the following steps:

1. initialize the parameters of the Gaussian mixtures for each
of the image clusters. The initial assignments of images to
clusters is determined at random or using the relevant text
associated with each web image.

2. compute the likelihood of all observations and the a posteriori
probability γ

(n,s,r)
c,m = P (c, m, s|v(s,r)

n ).

γ(n,s,r)
c,m =

P (v
(s,r)
n |m, c, s)P (m|c)∑

m′,c′,s′
P (v(s,r)

n |m′, c′, s′)P (m′|c′)

where n = 1, . . . , N is the index over all N images in the
database. The computational complexity is decreased by us-
ing ”hard assignment” and computing γ

(n,s,r)
c,m as follows:

γ(n,s,r)
c,m =

⎧⎪⎨
⎪⎩

1, if {c, m, s} = arg max
c′,m′,s′

{P (m′|c′)
P (v(s,r)

n |m′, c′, s′)}
0, otherwise.

3. update the parameters of the Gaussian mixture for each clus-
ter from the image blocks and the partition assigned to that
cluster.

P (m|c) =

∑
n,s,r

γ(n,s,r)
m,c

∑
n,s,r

∑
m′

γ
(n,s,r)

c,m′

μc,m(i) =

∑
n,s,r

γ(n,s,r)
c,m v(s,r)

n (i)

∑
r,n,s

γ(n,s,r)
c,m

σ2
c,m(i) =

∑
n,s,r

γ(n,s,r)
c,m (v(s,r)

n (i)− μc,m(i))2

∑
n,s,r

γ(n,s,r)
c,m

where i is the index over the dimensions of the feature vector.
Note that for simplicity the covariance matrix is diagonal.

4. compute the observation likelihood
∏

n P (v(n)|c) for all im-
ages given the best image partition and best cluster assign-
ment.

5. if the absolute difference between the observation likelihood
at consecutive iterations falls below a threshold stop, other-
wise go to Step 2.
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Fig. 2. Precision and recall for image clustering using several visual
features types.

5. EXPERIMENTAL RESULTS

The experimental results of our approach were tested on a database
consisting of over 6000 web images corresponding to 36 queries
retrieved by the Google image search engine. The queries corre-
spond to nine categories such as sports, owers, animals, fruits,
cities, companies, celebrities, universities and natural disasters and
are ‘soccer’, ‘cricket’, ‘tennis’, ‘basketball’, ‘roses’, ‘tulip’, ‘jas-
mine’, ‘daffodils’, ‘dog’, ‘horse’, ‘elephant’, ‘snake’, ‘grapes’, ‘ap-
ple’, ‘mango’, ‘orange’, ‘Beijing’, ‘Paris’, ‘Chicago’, ‘Delhi’, ‘In-
tel’, ‘IBM’, ‘Walmart’, ‘Citibank’, ‘George Bush’, ‘mother Teresa’,
‘Michael Jordan’, ‘Tom Hanks’, ‘Stanford’, ‘Georgia Tech’, ‘Prince-
ton’, ‘Harvard’, ‘volcano’, ‘earthquake’, ‘hurricane’ and ‘ re’. For
each of the above queries we have generated ten extended queries.
By example for query ’roses’ the extended queries are ’red roses’,
’yellow roses’, ’roses bouquet’, ’roses vase’, ’roses painting’, ’roses
white’, ’pink roses’, ’roses wreath’, ’blue roses’ and ’garden roses’.
For each extended query we gathered the top 20 images and web
pages returned by Google web image search engine. The number of
images for each query varies between 150 and 200.

A common performance measure used in clustering is the inter-
class and intra-class distances. This criteria measures the quality of
clusters in the absence of ground truth data. An alternative criteria,
common in data retrieval, and also used in this paper is the computa-
tion of the average precision and recall. In our experiments the data
obtained for each of the Nq = 36 queries was automatically clus-
tered into K = 10 clusters. Next, in order to match the labels of the
ground truth data (determined manually) and the labels computed by
our clustering method we used a maximum weight matching algo-
rithm on a weighted bipartite graph G(V = O∪C, E, W ) where, O
and C contain vertices for each of the original clusters and computed
clusters respectively. E is the complete set of possible edges and W
is the set of weights where each edge has a weight equal to the num-
ber of common elements in the clusters it connects. The quality of
the clustering system is determined by the average precision P and
recall R over all queries computed as

P =
1

Nq

Nq∑
q=1

1

K

K∑
k=1

Nc(k, q)

Nr(k, q)
(1)

0 10 20 30 40 50 60
35

40

45

50

55

60

65

70

75

BLOCK 1S, 3M
BLOCK 2S,10M
BLOCK 3S, 35M
BLOCK 10S, 100M
JSEG 10S,200M

Fig. 3. Precision and recall for image clustering using SIFT features
and four types of block segmentation con gurations and 10 JSEG-
based segmentation con gurations.
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Fig. 4. Precision and recall for image clustering using HSVC fea-
tures and four types of block segmentation con gurations and 10
JSEG-based segmentation con gurations.

R =
1

Nq

Nq∑
q=1

1

K

K∑
k=1

Nc(k, q)

Nl(k, q)
(2)

where Nc(k, q) is the number of correct matched images for query
q and cluster k, Nl(k, q) is the number of images assigned to cluster
k in query q in the ground truth data, and Nr(k, q) is the total num-
ber of documents assigned to cluster k in query q by our clustering
algorithm.

We tested the image clustering performance for the visual fea-
tures described in Section 3. It can be seen that among all the fea-
tures tested the SIFT histograms and HSV correlograms perform
best. At lower recall values the SIFT histograms achieve higher pre-
cision than HSV correlograms features while at higher recall values
the roles are changed. In these experiments we used features ex-
tracted from the full image as well as features extracted from three
block based image segmentations into (Nx, Ny) = (1,1), (2,2), (4,4)
non-overlapping rectangular blocks. In all of the above experiments
we used 35 mixtures per cluster.
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Fig. 5. Precision at top 5 (left column) and top 20 (right column)
recall for each of the 36 queries.

Figures 3 and 4 compare the image clustering results for dif-
ferent image partitions using SIFT histograms and HSVC features.
The graph compares the performance of the image clustering de-
scribed in Section 4 using block and data driven segmentations. In
block segmentations we set four values for the S and M nodes of
the clustering model (Figure 1) as follows: S = {1, 2, 3, 10} and
M = {3, 7, 35, 100} respectively. The precision-recall curves for
each of these parameters are denoted as BLOCK 1S 3M, BLOCK
2S 10M, BLOCK 3S 35M and BLOCK 10S 100M respectively. For
S = 1 the entire image is considered, for S = 2 the image is seg-
mented in (Nx, Ny) = (1,1), (2,2) blocks respectively, for S = 3
the image is segmented in (Nx, Ny) = (1,1), (2,2), (4,4) blocks re-
spectively and for S = 10 the image was segmented in (Nx, Ny) =
(1,1), (1,2), (1,3), (2,1), (2,2) (2,3), (3,1), (3,2), (3,3) and (4,4) blocks
respectively. For data driven segmentation we used ten segmentation
con gurations S = 10 obtained using the parameter sets described
in Section 2. In this experiment we used 200 mixtures per cluster
(M = 200). This experiment is denoted as JSEG 10S 200M. Note
that when features are extracted from the entire image the algorithm
becomes a Gaussian mixture tting and the performance increases
with the number of block segmentations used. However, partition-
ing the image into rectangular blocks does not always capture the
actual semantic regions in the image. As seen in Figures 3 and 4, us-
ing JSEG segmentation with 10 segmentation con gurations per im-
age leads to a signi cant increase in performance over block based
segmentation with the same number of con gurations. Figure 5 il-
lustrates the precision and recall at top ve and top 20 for each of the
36 queries for the JSEG 10S 200M experiment.

6. CONCLUSIONS

This paper describes a web image clustering algorithm that relies on
a uni ed Bayesian framework that iteratively selects the best seg-
mentation and image clusters from existing data. In our approach,
the visual features were obtained from either rectangular image blocks
or from image regions obtained using the JSEG segmentation algo-
rithm. The accuracy of image clustering increased with the number
of block segmentation con gurations and reached the best overall
performance for 10 JSEG-based image segmentations. In addition,
our experimental results determined that visual features extracted

HSV correlograms and from the histogram of SIFT points within
each image region provide the most reliable set of features for im-
age clustering among those presented in this paper. Future work will
be directed towards enhancing the image feature extraction and in-
cluding more complex region based feature extraction techniques to
increase the accuracy of the image clustering method.
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