
THE Star-P HIGH PERFORMANCE COMPUTING PLATFORM

Alan Edelman
Dept of Mathematics, Massachusetts Institute of Technology

Edelman@Mit.edu
Interactive Supercomputing

ABSTRACT

The high performance MATLAB® user now has more
choices than ever. Interactive Supercomputing’s Star-P
embraces this new world where, as an example, a MATLAB
user who never wants to leave MATLAB might sit next to a
C++ programmer at the office and both surf the internet for
the latest high speed FFT written in yet another language.
The MATLAB of the past now becomes one browser into a
bigger computational world. HPC users need this bigger
world. Other “browsers” can be imagined. The open Star-P
platform gives users options never before available to
programmers who have traditionally enjoyed living
exclusively inside a MATLAB environment.

Index Terms—MATLAB, parallel, high performance.
prototyping

1. INTRODUCTION

Interactive Supercomputing’s STAR-P platform represents a
fresh approach to high performance computing whereby the
MATLAB user has all the comforts and features of the
familiar desktop environment, while gaining access to the
emerging opportunities in hardware and open source
software that represent the new reality of the modern
generation of high performance computing.
 The platform embraces open standards as
illustrated in the proposed future architecture diagram of
Figure 1. The current Star-P product only supports the
MATLAB client but this is just the beginning.

Figure 1: Star-P architecture with proposed future clients

 To set the stage it is useful to put MATLAB in its
correct context. In a recent survey, users of high
performance computers were asked which application they
used for prototyping codes. The results are histogrammed in
Figure 1 below. The survey indicates clearly that by and
large most users are prototyping in the C family of
languages. Following this are slightly more MATLAB users
than Fortran users. The open source language Python is
emerging as a player in this space. Then Mathematica,
Excel, Octave, R, and IDL all figure together as significant
players.

IV ­ 11971­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

Figure 1: Software users begin with to prototype high performance computing applications? Users may employ
multiple prototype languages giving a sum exceeding 100%. (Source: Simon Management Group study)

The significance of this survey is that MATLAB alone does
not contain all the pieces of the puzzle needed by high
performance computing users. This is a significant contrast
from the desktop world, where by and large many users are
happy to stay within the confines of the MATLAB
environment and functionality. Furthermore, an
organization purchasing an HPC product for MATLAB
alone may not be addressing the full needs of its users.
Soon these open source languages are likely to outstrip the
features and performance of MATLAB alone. Other
proprietary libraries continue to innovate providing users
with sets of choices not readily available within the walls of
the MATLAB environment. The goal of Star-P is to make
these possibilities seamlessly available to MATLAB and
non-MATLAB user alike.

2. NEW SOFTWARE STANDARDS

The Interactive Supercomputing Star-P platform addresses
the difficulties faced by many high performance computing
users with existing codes.

Scenario 1: Suppose a MATLAB user has inherited codes
in C or Fortran MPI. This user believes it would be
impossible to rewrite this code in MATLAB, but
nonetheless really wishes the clock can be turned back and
if it could all be started over again, the user can run in
MATLAB. The Star-P environment has the hooks and
abstractions to allow MPI programs to be seamlessly
plugged into the platform.

Scenario 2: Suppose a user who generally prefers the
MATLAB environment has some serial C or Fortran codes
that needs to be run with a multitude of parameter choices
and then later the large collection of data needs to be
analyzed inside the MATLAB environment. The Star-P
environments makes this possibility particularly easy.

Scenario 3: Suppose a user wants a new HPC tool from a
propriety library vendor. These users all in all would prefer
transparent connections to their products when they overlap
MATLAB’s functionality but realize superior performance.

IV ­ 1198

The Star-P environment allows the development of
wrappers for this purpose.

Scenario 4: With the emerging growth of multicore software
with multithreaded products, users of clusters of SMPs who
wish to run the multicore software seamlessly will be able to
do so in the Star-P environment.

3. STAR-P HISTORY AND PERFORMANCE STUDY

Star-P began ten years ago as an academic research project
at the Massachusetts Institute of Technology. Based
perhaps loosely on lessons learned at Thinking Machines
Corporation, and with inspiration from the MultiMatlab
Project at Cornell University, [9] we built what may well
have been the first global array based parallel MATLAB in
the mid-nineties. A few years ago, a survey of all the
parallel MATLABs was undertaken to understand the use of
compilers, compiler/server technology, master/slave
technology, and message passing approaches. [1]

 Every year the Star-P technology was tested in
MIT’s graduate course on high performance computing.
The first author is proud that among his students have been
both authors of FFTW, some of the authors of
pMATLAB,[7,8]. Over the years the project was known as
MITMATLAB, pMATLAB itself, MATLABp, and
MATLAB*p.

 In a recent classroom experiment reported in [11] and
reprinted here for the benefit of the ICASSP audience,
Students participated in performance studies as part of the
development time study experiment of the HPEC program
[6]. What has become increasingly clear from these studies
is that a few very talented students who have the knack, can
find ways to improve the performance of codes, but even
the most talented and inclined still expend a great deal of
time.

The students were given a by now standard programming
assignment in parallel computing classes, the two
dimensional Buffon needle problem. A typical parallel
MATLAB solution in Star-P looked like:

Fig 2: The Buffon Needle Problem executed by 29 students in three evolutionary versions of Star-P each executed ten times
and compared with MPI runs written by the same students. The mean MPI timing was 2.8 seconds. We have not here
normalized per student but we should report that a handful of students who worked hard achieved what might be considered
the optimum of 1 sec on 4 processors in MPI. In a boxplot, the blue box ranges from the 25th to 75th percentiles of the ten
data points. The red line is at the median. The whisker is the full extent of the data omitting outliers which are the red
plusses. Writing message passing code was widely considered an unpleasant chore while the insertion of the two characters
“*p” hardly seemed to be worthy of an MIT problem set.

function z=Buffon(a,b,l, trials)
r=rand(trials*p,3);
x=a*r(:,1)+l*cos(2*pi*r(:,3));
y=b*r(:,2)+l*sin(2*pi*r(:,3));
inside = (x >= 0) & (y>=0) & (x <= a) & (y <= b);
buffonpi=(2*l*(a+b) - l^2)/ (a*b*(1-sum(inside)/trials));

 The serial MATLAB code differs from the parallel one
by the “*p” in red above. We ran each code ten times in
three revisions of STAR-P. Figure 2 plots the students
timings on 4 processors (ten million trials).

We can only report anecdotal evidence about the human
time for all 29 students, but overwhelmingly the students
preferred adding the two characters “*p” to their code as

compared to writing the MPI code. The mean time was
2.8 seconds on four processors. A handful of the students
who were determined to performance tune their MPI code
reached times close to 1 second. Thus the Star-P system
brings users to within 40% of the hand coded optimum.
The Star-P design allows for even this overhead to be
shaved down further in future releases.

To understand scalability, the following times are the
mean run times on the internal version of Star-P. (We
note that the other versions of Star-P indicate similar
scalability characteristics:) Each number is the average of
290 runs, 10 runs for each of 29 student codes.
Processors 1 2 4 8

Avg Seconds 5.7 2.9 1.4
0.
7

Student Student Student

Star-P 2.3 (May 2006) Star-P Internal Star-P 2.1 (March 2006)

Mean MPI Timing

Methodology: No
user changes to
codes allowed
between runs

Time on 4p (seconds)

IV ­ 1199

Our view of this experiment is best illustrated as in the
cartoon in Figure 3 which follows the productivity
methodology introduced by Kepner and colleagues.

Fig 3: Kepner diagram illustrating the main point of this
study. Productivity may be thought of as best slope on
line to the origin. The vertical rise in performance of
Star-P may be thought of as riding the technology curve as
students expended no additional effort. Typical
methodologies only report MPI vs serial on the vertical
axis. The Kepner methodology provides the means of
seeing productivity on a two dimensional scatter plot.

MATLAB is a product of the Mathworks, Inc. This and other trademarks are property of their
respective owners. Use of these marks does not imply endorsement.

4. REFERENCES

.
[1] R. Choy and A. Edelman, “Parallel MATLAB doing it
right,” Proceedings of the IEEE, Vol.93, No.2, Feb 2005, pages
331-341.
[2] P. Husbands and C. Isbell, “The Parallel Problems Server: A
Client-Server Model for Large Scale Scientific Computation.”
Proceedings of the Third International Conference on Vector
and Parallel Processing. Portugal, 1998.
[3] P. Husbands, Interactive Supercomputing, PhD Thesis,
Massachusetts Institute of Technology, Cambridge, 1999.
[4]Interactive Supercomputing:
http://www.interactivesupercomputing.com.
[5] A Edelman, MIT Course 18.337:
http://beowulf.csail.mit.edu.
[6] J. Kepner, http://www.highproductivity.org
[7] J. Kepner and S. Ahalt, “MatlabMPI,” Journal of Parallel
and Distributed Computing (JPDC), 64(8): 997-1005 (2004).
(http://www.ll.mit.ede/MatlabMPI).
[8] N. Travinin and J. Kepner, pMatlab Parallel Matlab Library
IJHPCA 2006. (http://www.ll.mit.edu/pMatlab).
[9] Vijay Menon and Anne E. Trefethen, MultiMATLAB:
Integrating MATLAB with High-Performance Parallel
Computing
[10] Sudarshan Raghunathan: Making a aupercomputer do what
you want: High level tools for parallel programming
(Computing in Science and Engineering)
[11] A. Edelman, P. Husbands, S. Leibman, Interactive
Supercomputing’s Star-P Platform:
Parallel MATLAB and MPI Homework
Classroom Study on High Level Language Productivity,
Proceedings of HPEC06.

.

Development Time

Performance

Serial

Star-P 2.1

Star-P 2.3

Star-P Internal

MPI Typical

MPI Best

0 Smal Large

Bad

Best

IV ­ 1200

