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ABSTRACT

Matlab is one of the most popular computer languages for tech-
nical and scienti c programming. However, until recently, it has
been limited to running on uniprocessors. One strategy for overcom-
ing this limitation is to introduce global distributed arrays, with those
arrays distributed across the processors of a parallel machine. In this
paper, we describe the compilation technology we have designed for
Matlab D, a distributed-array extension of Matlab. Our approach is
distinguished by a two-phase compilation technology with support
for a rich collection of data distributions. By precompiling array op-
erations and communication steps into Fortran plus MPI, the time
to compile an application using those operations is signi cantly re-
duced. This paper includes preliminary results that demonstrate that
this approach can dramatically improve performance, scaling well to
at least 32 processors .

Index Terms— Parallelizing compilers

1. INTRODUCTION

The scienti c application development community today is bifur-
cated. Most scientists prefer to develop algorithms and applications
in a high-level language like Matlab, appropriately specialized to
their domains through the use of libraries or “toolboxes.” On the
other hand, those producing computationally intensive applications,
for which performance is essential, typically write parallel programs
in conventional languages like C, C++, and Fortran with calls to
MPI. This approach is both tedious and error prone, so most appli-
cations are produced by expensive professional programmers. For
this reason, many scientists and engineers have little or no access to
high-end computing for the solutions of their problems.

Many of these problems could be ameliorated if Matlab and sim-
ilar languages could be extended and compiled to make ef cient use
of parallelism. There are two general strategies being pursued by the
community to achieve this goal.

The rst is to extend Matlab by the use of either explicit paral-
lel constructs or by allowing multiple Matlab programs, running on
different processors, to exchange messages using MPI. Mathworks
itself has produced a product that supports the latter [1], and the com-
pany has indicated that it will add explicit parallelization extensions,
such as unsynchronized loops, in the near future [2]. We believe that
these strategies, though clearly useful, will not nd wide acceptance
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in the Matlab community because of the complexity of parallel pro-
gramming, particularly using MPI. Users who have turned to Matlab
because of its simplicity will not easily relinquish that advantage.

The second approach to parallel computing in Matlab is to ex-
tend the language by adding arrays that are global but distributed
across the memories of a parallel processor. This strategy, which
is employed by Interactive Supercomputing [3] and several research
projects [4, 5, 6], involves the use of parallel versions of matrix op-
erations, with the required communication built in. Several of these
use ScaLAPACK, the parallel version of LAPACK, for these opera-
tions. While this approach is extremely successful for a number of
problems, its performance is limited on problems not well suited to
the set of distributions supported by the underlying parallel libraries.
To support a wider variety of distributions, the primitive matrix op-
erations would need to be rewritten by hand, with communication
routines coded to handle the data exchange needed for operations on
arrays with different distribution. If there are n different distributions
and m operations, this would require that nm different operation im-
plementations and n2 communication patterns be explicitly coded,
which would be a signi cant implementation effort.

The goal of our project at Rice University is to use automatic
methods to make it feasible to extend Matlab with a rich collection
of array distributions without the implementation effort of explicitly
recoding the library operations for each distribution. Furthermore,
to achieve the highest possible performance, we plan to translate the
extended Matlab programs to Fortran plus MPI.

The language we are developing, which we call Matlab D, ex-
tends Matlab with the addition of primitive operations to allocate dis-
tributed arrays with different distribution types taken as parameters,
much as sparse arrays are allocated in the current Matlab product.
The compilation system for this language is based on two existing
technologies: a High Performance Fortran (HPF) compiler devel-
oped at Rice over the past decade and a compiler generation frame-
work called telescoping languages.

HPF is an extension of Fortran 90 with directives for the com-
piler about data distributions [7]. The Rice HPF compiler generates
Fortran code with MPI calls using the directives to determine how to
partition the data and computation among the processors. It gener-
ates all of the interprocessor communication operations required to
correctly implement the program and performs many optimizations
to reduce the cost of communications [8].

Telescoping languages is a strategy developed at Rice for gen-
erating optimizing compilers for domain-speci c languages based
on libraries of fundamental domain operations. As shown in Fig-
ure 1, the telescoping languages system operates in two phases. The
Library Analysis and Preparation Phase, which is performed infre-
quently, specializes the domain libraries in advance to the calling
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Fig. 1. Telescoping-Languages Framework

contexts that will likely exist in programs presented to the generated
optimizing compiler. The Script Compiler Phase analyzes the user
program to determine the types of operands at each library call and
select the variant of the called routine that is optimized for those
operand types. The telescoping languages framework is being used
to produce a compiler for sequential Matlab programs [9].

Our strategy is to use these two technologies in combination to
produce the specialized operations and communications needed to
implement Matlab D. In advance, the Matlab compilation framework
would produce generic HPF routines for each mathematical array
operation and each communication operation. These routines would
then be specialized by the HPF compiler for each supported pattern
of distributions for the operands. Then, when the user presents a
Matlab D program, the compiler would perform an analysis to de-
termine the distribution type for each array in the program and, for
each operation, select the specialized primitives needed to imple-
ment it. Thus, this strategy automates the process of hand coding
operations for each distribution. The Matlab D compiler will be able
to produce good code for each distribution type it supports. This will
make it possible to signi cantly expand the set of applications that
can be ef ciently implemented in Matlab. For example, the highest
performance on the NAS parallel benchmarks is achieved by using
a distribution called multipartitioning, which is currently supported
by the Rice compiler [8, 10].

This paper gives an overview of our strategy for Matlab D, fo-
cusing on the issue of data movement. An extended example shows
how the compilation process achieves high performance without sac-
ri cing productivity.

2. MATLAB D STRATEGY

The Matlab D compiler [11] extends both phases of the telescoping-
languages compiler. In the rst phase, shown in the top of Figure 2,
the compiler specializes the library routines and generates multiple
variants in HPF. After library precompilation, the compiler translates
and specializes Matlab scripts using the specialized library routines,
as shown in the bottom of Figure 2.

The rst step in the library preprocessing phase is to perform
type and distribution analysis. Matlab is a weakly typed language,
so, in order to translate the routines to Fortran, a strongly typed
language, valid type con gurations for the variables must be deter-
mined. As part of type analysis, the compiler performs distribution
analysis to track the best possible distributions of the arrays through
the program based on how they are declared and used.

The compiler generates a variant for each valid type con gura-
tion found. The compiler determines where redistribution is needed
based on the distributions for each variant. For example, if arrays B
and C are added in an operation to form array A but their elements
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are not aligned correctly on the processors, the compiler inserts calls
to redistribute B and C before the operation. The element-wise array
routines operate on local data and do not perform communication.

Where possible, the compiler specializes calls by replacing them
with calls to the variant of that routine best specialized for the con-
text. The compiler then translates the variant to HPF. After the HPF
variants are produced, the HPF compiler produces Fortran with MPI
from each of the variants, and a Fortran compiler generates an object
le from each of the Fortran with MPI variants. Information about

the generated variants is recorded in the specialization database.
User-script compilation is similar to library precompilation. The

user-level compiler uses the specialization database and the type in-
formation from the library preprocessing phase. The compiler per-
forms type and distribution analysis, and based on the distribution
information, determines where to insert calls to data movement rou-
tines. The compiler also uses the type information to uncover opti-
mization opportunities, such as using shadow regions on the proces-
sors in order to avoid local copies during shift operations.

During specialization, the compiler replaces library calls in the
script with calls to the specialized variant best-suited for the call-
ing context. After specialization, the script is translated to Fortran
with calls to the precompiled variants. By using calls to precom-
piled variants, the user scripts can be translated directly to Fortran,
instead of to HPF, since the data movement and partitioning required
is contained in variants of the library routines called.

3. COMPILATION EXAMPLE

This section describes user script compilation in more detail using
the following stencil calculation as a running example.

A = distributed1(n, block)
B = distributed1(n, block)
C = distributed1(n, block)
...
A(2:n-1) = B(1:n-2) + C(3:n)

Distribution analysis shows that the elements accessed in the ad-
dition are not aligned on the processors. The data in B needs to be
shifted by 1 and the data in C needs to be shifted by -1 to be aligned
correctly with A. To mark that data movement is needed, the com-
piler inserts copies to temporaries. The compiler also replaces the
Matlab primitive “+” with a call to the generic add library routine.

A = distributed1(n, block)
B = distributed1(n, block)
C = distributed1(n, block)
...
T1 = get(B, 1, n-2)
T2 = get(C, 3, n)
A(2:n-1) = add(T1, 1, n-2, T2, 3, n)
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The compiler next translates the script into Fortran. Calls to
MPI are encapsulated in the data movement library routines. The
compiler generates templates, or virtual arrays, to guide array align-
ment. A template is created with the chosen distribution and size,
and arrays are aligned on the processors relative to the template.

call mpi_init(ierr)
...
! create a template descriptor
t = gen_templateB(n)
! create array descriptors
A = distributedB1(n, t, 0)
B = distributedB1(n, t, 0)
C = distributedB1(n, t, 0)
...
T1 = distributedB1(n-2, t, 1)
T2 = distributedB1(n-2, t, 1)
call moveB1(B, 1, n-2, T1)
call moveB1(C, 3, n, T2)
call addB1(A,2,n-1,T1,1,n-2,T2,3,n)
...
call mpi_finalize(ierr)

Thus, B and C are shifted using the move routine, and then the
arrays are added, each operation using the routine specialized for
one-dimensional, block distributed arrays.

In this example, copying B and C into temporaries to align the
data is inef cient because the majority of the data is copied locally.
To save time and space, instead of copying arrays B and C, the tem-
poraries are created to point into the existing storage for B and C, plus
a small amount of space for communicated data known as overlap ar-
eas or shadow regions. Shifts of small amounts become updates of
the overlap areas instead of full copies.

Figure 3 shows array B with an overlap area of one element on
each processor. The temporary array T1 refers to the same storage,
but beginning in the overlap area on all processors but the rst. The
size of the overlap area is determined during type inference, and
calls to move are replaced with calls which update the overlap areas
during specialization.

4. EXPERIMENTAL RESULTS

We evaluated our strategy on two stencil codes running on an AMD
cluster with 275 dual core 2.2 GHz Opteron CPUs. Each core of the
cluster has 2GB of memory. Each Opteron processor has a 1MB L2
cache. Processors are interconnected with a fast Cray RapidArray.

The two codes tested in this experiment are a 1D 2-point sten-
cil using two double precision arrays each with 16M elements, and
a 2D 4-point stencil using two 4K × 4K double precision arrays.
Both arrays were partitioned across the processors with BLOCK dis-
tribution. The generated code was compiled with the PGI Fortran
compiler pgf77 6.0.2 with -O3 and linked with the MPICH library
version 1.2.6.

We compare the performance of the generated Fortran versions
(both parallel and sequential) with sequential Matlab versions using
Matlab 7.2. For each experiment, we present the best execution time
from multiple runs. To illustrate the bene t of using overlap areas to
avoid local copying, we timed both stencil codes with and without
the use of overlap areas.
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Fig. 4. Execution time of the stencil computation
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Fig. 5. Speedups over sequential Fortran and Matlab codes

Figure 4 shows the execution time of the generated parallel codes
on up to 32 processors. The sequential Matlab execution time was
2.94 seconds for the 1D case and 3.47 seconds for 2D case. Both
sequential Fortran codes with and without local copying performed
signi cantly better than the Matlab code, with speedups of 3.8 and
8.4 respectively. Eliminating local data copying improved perfor-
mance by up to a factor of 2.7.

Figure 5 presents the speedups of the parallel Fortran codes over
the sequential Fortran and Matlab codes. The parallel codes scale
well up to 32 processors. The less than perfect speedups are due to
the smaller data sizes on larger number of processors. The speedups
over the sequential Matlab include the contributions from the fast
sequential execution of the generated Fortran codes.

5. IMPLEMENTATION STATUS AND FUTURE WORK

We are currently extending our sequential Matlab compiler to con-
struct the Matlab D compiler. We have implemented a prelimi-
nary distribution analysis using the existing type analysis frame-
work, which already has support for intrinsic type, size, and shape
problems. We are adding our algorithms to insert calls to the move
routines and to handle shadow regions to the specialization structure.
Code generation in the backend will be extended to output HPF di-
rectives and MPI initialization.

Once the prototype is constructed, we plan to extend our dis-
tribution analysis algorithm to recognize that the distribution of an
array can change during execution through redistribution. The cur-
rent implementation relies on the assumption that each array has the
same base distribution throughout the program, and that arrays can
only be shifted. We also plan to extend the base library to ef ciently
handle routines, such as matrix multiplication and FFT, which can-
not avoid communication by redistribution in advance.
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6. RELATED WORK

There are a number of projects focused on the parallelization of Mat-
lab. Several of these are similar to Matlab D in the sense that they
compile Matlab to C or Fortran, either generating assertions for a
parallel Fortran compiler or calls to parallel numerical libraries. In-
cluded in this class are Falcon [12], Otter [13], CONLAB [14], and
ParAL [15]. While these projects obtain improved performance by
compiling to low-level languages, they do not take advantage of the
performance possible from being able to automatically specialize li-
braries for additional distributions.

Another strategy is to implement MPI and PVM routines that
users can call directly from Matlab scripts, as in MatlabMPI [16]
and the MPI and PVM Toolboxes [17]. These toolboxes give the
user more control over the details of parallelism but, because MPI
and PVM are low-level and dif cult to use, they should result in
lower levels of productivity than global array parallelization.

Some projects, such as Star-P [3], LAPACK for Clusters [6],
MultiMATLAB [18], and the Matlab Distributed Computing Tool-
box and Engine [1], provide mechanisms for users to send com-
mands to a parallel backend. These, along with the projects im-
plementing MPI/PVM, rely on the Matlab interpreter, which can be
signi cantly slower than compiled Fortran. Also, the specialization
pass in the Matlab D compiler can nd and perform optimizations
which these projects do not, such as the use of overlap areas.

7. CONCLUSION

The global distributed array strategy, which Matlab D represents, is
the most promising approach to introducing parallelism into Matlab
without signi cantly reducing the productivity of end users. By us-
ing telescoping languages coupled with HPF compilation, the Mat-
lab D compilation framework makes it possible to support a rich col-
lection of distribution without laborious hand coding of array oper-
ation libraries. It also keeps compilation times low by precompiling
the operation and communication libraries. Our preliminary results
for small stencil kernels show that the overall approach promises
to yield dramatic performance improvements over sequential Mat-
lab implementations, with excellent scaling. Over the coming few
months, we plan to expand our implementation and experiments to a
much larger class of applications and distributions.
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