
PMATLAB: PARALLEL MATLAB LIBRARY FOR SIGNAL PROCESSING APPLICATIONS
1

Nadya T. Bliss, Jeremy Kepner, Hahn Kim, Albert Reuther
{nt, kepner, hgk, reuther}@ll.mit.edu

MIT Lincoln Laboratory

1
This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations,

conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.
MATLAB® is a registered trademark of the MathWorks. Reference to commercial products, trade names, trademarks or manufacturer does not constitute or
imply endorsement.

ABSTRACT

MATLAB® is one of the most commonly used languages for

scientific computing with approximately one million users

worldwide. At MIT Lincoln Laboratory, MATLAB is used by

technical staff to develop sensor processing algorithms.

MATLAB’s popularity is based on availability of high-level

abstractions leading to reduced code development time. Due

to the compute intensive nature of scientific computing,

these applications often require long running times and

would benefit greatly from increased performance offered

by parallel computing. pMatlab (www.ll.mit.edu/pMatlab)

implements partitioned global address space (PGAS)

support via standard operator overloading techniques. The

core data structures in pMatlab are distributed arrays and

maps, which simplify parallel programming by removing

the need for explicit message passing. This paper presents

the pMaltab design and results for the HPC Challenge

benchmark suite. Additionally, two case studies of pMatlab

use are described.

Index Terms — data processing, parallel languages,

parallel programming, software

1. INTRODUCTION

MATLAB has emerged as one of the predominant languages

for scientific and technical computing and is widely used at

MIT Lincoln Laboratory for signal, image, and sensor

processing. MATLAB’s popularity is largely dependent on

the expressiveness of the language and powerful graphics

that allow visualization of multi-dimensional data sets. The

users of MATLAB tend to be engineers and scientists, and

high-level languages allow them to concentrate on their core

competency and not implementations details. However, to

fully test the validity of the algorithms, test runs on large

data sets, with broader range of parameters are required.

This often causes the codes to run for hours and even days

and parallel capability without significant increase in

programming complexity is beneficial. The pMatlab library

provides this capability by implementing partitioned global

address space (PGAS) support in MATLAB by introducing

two core data structures: distributed arrays and maps. This

paper describes the design of pMatlab and performance

results of pMatlab implementations of the HPC Challenge

benchmarks. Additionally, it highlights two pMatlab case

studies at MIT Lincoln Laboratory.

The paper is organized as follows: Section 2 highlights

related work; Section 3 discusses pMatlab design along with

programming models. Section 4 presents benchmark results,

while Section 5 discusses pMatlab use at the Laboratory.

Finally, Section 6 summarizes and concludes the paper.

2. RELATED WORK

Parallel MATLAB has been an active area of research for a

number of years and many different approaches have been

developed. These different approaches can be roughly

divided into three categories: message passing, client/server

and PGAS (partitioned global address space).

The message passing approach [4, 10] requires the user to

explicitly send messages within the code. These approaches

often implement a variant of the Message Passing Interface

(MPI) standard [16]. While MPI approaches are powerful,

they significantly increase coding complexity. Nonetheless,

a message passing functionality is the minimum requirement

for parallel programming. Among the available MATLAB

message passing implementations, MatlabMPI is currently

the most popular implementation with thousands of users

worldwide. More recently, the incorporation of MPI into

The MathWorks’ Distributed Computing Toolbox (DCT)

[6] makes message passing available to a much broader

range of users.

Client/server approaches [2, 15] use MATLAB as the user’s

front-end to a distributed library. For example, Star-P keeps

IV 11891424407281/07/$20.00 ©2007 IEEE ICASSP 2007

the distributed arrays on a parallel server, which calls the

necessary routines from parallel libraries. These approaches

often provide the best performance once the data are

transferred to the server. However, these approaches are

limited to those functions that have been specifically linked

to a parallel library and require installation of the additional

libraries.

pMatlab falls into the third category, the PGAS approach.

Star-P and Falcon [9] also fall into this category. These

approaches provide a mechanism for creating global arrays,

which are distributed across multiple processors. Global

arrays have a long history in other languages, for example

Fortran [11, 18] and C [8], as well as in many C++ libraries

such as POOMA [5], GA Toolkit [17], PVL and VSIPL++

[12]. The global array approach allows the user to view a

distributed object as a single entity. This approach allows

operations on the array as a whole or on local parts of the

array.

pMatlab is a unique parallel MATLAB implementation for a

number of reasons. pMatlab supports global arrays and

allows combining global arrays with direct message passing

for optimized performance. While pMatlab does use

message passing in the library routines, a typical user does

not have to explicitly incorporate messages into the code.

pMatlab does not link in any external libraries, nor does it

compile the language into an executable. Our library is

implemented entirely in MATLAB, which significantly

reduces the size of the library while providing support for

distributions and redistributions of up to four-dimensional

arrays distributed with any combination of block-cyclic

distributions.

3. PMATLAB DESIGN AND IMPLEMENTATION

The pMatlab library is designed and implemented at MIT

Lincoln Laboratory and builds upon concepts from the

Parallel Vector Library (PVL) and Star-P, and uses

MatlabMPI as the communication layer. Figure 1 illustrates

the layered architecture of the parallel library. In the

architecture, the pMatlab library implements distributed

array constructs. In addition, a subset of functions, such as

plus, minus, fft, mtimes, and all element-wise

operations are implemented to operate on distributed arrays.

If a user requires additional functionality, s/he has the

flexibility of implementing specialized functions that are

optimized for the required data sizes and distributions.

pMatlab uses standard operator overloading techniques.

pMatlab map objects (see Section 3.1) can be passed to a

MATLAB constructor, such as rand, or zeros. The

constructors are overloaded and when a map object is

passed into a constructor, the library creates a variable of

type dmat, or a distributed array. pMatlab supports

numerical arrays of up to four dimensions of different

numerical data types and allows creation of distributed

sparse matrices.

Figure 1. Layered architecture.

3.1. Maps

The concept of using maps to describe array distributions

has a long history. The ideas for pMatlab maps are

principally drawn from the High Performance Fortran (HPF)

community [13, 20], MIT Lincoln Laboratory Space-Time

Adaptive Processing Library (STAPL) [2], and Parallel

Vector Library (PVL). A map for a numerical array defines

how and where the array is distributed (Figure 2).

The pMatlab map construct is defined by three components:

(1) grid description, (2) distribution description, and (3)

processor list. The grid description together with the

processor list describes where the data object is distributed,

while the distribution describes how the object is

distributed. pMatlab supports any combination of block-

cyclic distributions up to four dimensions. Data overlap,

required for some image processing applications, is also

supported through the map interface. The addition of maps

to the API represents the only major change to the general

MATLAB syntax.

Figure 2: Anatomy of a map. A map is defined as an assignment

of blocks of data to processing elements.

While maps introduce a new construct, they have significant

advantages over both message passing approaches and

predefined limited distribution approaches. Specifically,

pMatlab maps are scalable and allow the user to separate the

task of mapping the application from the task of writing the

applications. Additionally, maps make it easy to specify

different distributions for different algorithms. Finally, maps

support pipelining via mapping of different computations on

different subsets of processors.

IV 1190

3.2. Programming Models

pMatlab supports both pure global array and fragmented

global array programming models (see Figure 3). Pure

global arrays provide the highest level of abstraction and

require minimum changes to the code.

It is impractical to provide optimized implementations of the

approximately 8,000 built-in functions for every

combination of array distributions. Instead, pMatlab also

supports fragmented global array programming style. This

style is less elegant but provides strict guarantees on

performance. Here, distributed arrays are used as containers

– the data is extracted from the distributed array, operated

on, and then inserted back into the distributed array.

4. BENCHMARK RESULTS

This section focuses on pMatlab benchmark results.

Performance is compared to serial MATLAB and C+MPI

implementations. We have chosen to use the HPC Challenge

Benchmark suite [14] for this comparison.

The four primary HPC Challenge benchmarks (STREAM,

FFT, Top500 and RandomAccess) are implemented using

pMatlab and run on a commodity cluster system [19]. Both

the pMatlab and C+MPI reference implementation of the

benchmarks are run on up to 128 processors. At each

processor count the largest problem size is run that would fit

in the main memory. The collected data measures the

relative compute performance and memory overhead of

pMatlab with respect to C+MPI. In addition, code sizes are

compared.

In general, the pMatlab implementations can run problems

that are typically the size of C+MPI implementation

problem size (Figure 4). This is mostly due to the need to

create temporary arrays when using high-level expressions.

The pMatlab performance ranges from being comparable to

the C+MPI code (FFT and STREAM), to somewhat slower

(Top500), to a lot slower (RandomAccess). In contrast, the

pMatlab code is typically 3x to 40x smaller than the

equivalent C+MPI code (Figure 5). For more details on

pMatlab implementations of the benchmarks, see [1].

5. USER EXPERIENCES

The true measure of success for any technology is its

effectiveness for real users. Table 1 highlights several

projects that use pMatlab on the MIT Lincoln Laboratory

interactive LLGrid system [19]. The projects are drawn

from the approximately one hundred and fifty current users

and are representative of the user base. The following two

sub-sections discuss specific case studies.

Figure 3. pMatlab programming models.

Figure 4. HPC Challenge Results.

Figure 5. HPC Challenge speedup vs code size comparison.

Table 1. Selected pMatlab applications.

IV 1191

5.1. Case Study 1: Terminal Doppler Weather Radar

The Terminal Doppler Weather Radar Data Quality

Improvement program is developing signal-processing

algorithms to mitigate range-velocity ambiguity [2]. For

example, gust fronts that are moving radially with respect to

the weather radar can be obscured by the inability of the

radar signal processing algorithms to distinguish its Doppler

velocity from weather that is not moving. The team needs to

rapidly write, evaluate, and revise these algorithms. Running

the algorithms on simulation data sets on a desktop

workstation typically executed for eight to ten hours. The

results of each simulation direct the parameter and algorithm

choices for subsequent simulations, and they usually could

only execute two of these simulations in a 24-hour period.

After parallelizing the simulations, the team now runs the

simulations on the desktop machines with eight to sixteen

processors. These simulations now complete in 30 to 60

minutes, affording eight to ten engineering turns per day.

5.2. Case Study 2: Optical Synthetic Aperture Radar

Optical synthetic aperture radar (OSAR) is a method of

generating images with laser radar that can resolve features

smaller than real-aperture spot size. Developing OSAR

algorithms requires simulating the return signals of a laser

radar, which is computationally intensive. Initially, the

parallel code distributed radar pulses across multiple

processors, with a serial to parallel development time ratio

of 100 to 1. Applying the OSAR simulation to new

applications revealed that the number of pulses is often

small containing many time bins. Due to pMatlab’s map

approach, modifying the code to distribute along time bins

was trivial.

6. CONCLUSIONS

pMatlab combines the productivity inherent in the MATLAB

programming language with PGAS, allowing MATLAB users

to exploit distributed systems with only minor changes to

the code. The implementation of the HPC Challenge

benchmark suite using the pMatlab library allows for

comparison with equivalent C+MPI codes. These results

indicate that pMatlab can achieve comparable performance

to C+MPI at usually one tenth the code size. Finally,

implementation data collected from pMatlab applications at

the Laboratory indicate that users are typically able to go

from a serial code to a well-performing pMatlab code in

about 3 hours while changing less than 1% of their code.

7. REFERENCES
[1] N.T. Bliss and J. Kepner, “pMatlab Parallel Matlab Library,”

To be published in the Special Issue on High Productivity

Programming Languages and Models, Int. Journal of High

Performance Computing Applications.

[2] J.Y.N. Cho, G. R. Elkin, and N.G. Parker, “Enhanced Radar

Data Acquisition System and Signal Processing Algorithms for the

Terminal Doppler Weather Radar,” Proc. AMS 32
nd

 Conf. on

Radar Meteorology, Albuquerque, NM, 24-29 Oct 2005.

[3] R. Choy and A. Edelman, “Parallel MATLAB: Doing It Right,”

Proc. of the IEEE 93(2), pp. 331-341, 2005.

[4] Cornell Multitask Toolbox for MATLAB (CMTM),

http://www.cs.cornell.edu/Info/People/lnt/multimatlab.html.

[5] J. C. Cummings et al, “Rapid Application Development and

Enhanced Code Interoperability Using POOMA Framework,”

Proc. SIAM Workshop on Object-Oriented Methods and Code

Interoperability in Scientific and Engineering Computing (OO98),

Yorktown Heights, NY, 21-23 Oct. 1998.

[6] L. Dean, S. Grad-Freilich, J. Kepner, A. Reuther, “Distributed

and Parallel Computing with MATLAB,” tutorial presented at

ACM/IEEE Conf. on Supercomputing, Seattle, WA, 12-18 Nov.

2005.

[7] C.M. DeLuca, C.W. Heisey, R.A. Bond, and J.M. Daly, “A

Portable Object-Based Parallel Library and Layered Framework

for Real-Time Radar Signal Processing,” Proc. 1
st
 Conf. Int.

Scientific Computing in Object-Oriented Parallel Environments

(ISCOPE ’97), Marina del Rey, CA, pp.241-248, 8-11 Dec, 1997.

[8] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick, UPC:

Distributed Shared Memory Programming, Wiley, Hoboken, NJ,

May 2005.

[9] Falcon Project: Fast Array Language Computation,

http://www.csrd.uiuc.edu/falcon/falcon/html.

[10] J. Kepner and S. Ahalt, “MatlabMPI,” Journal of Parallel and

Distributed Computing 64(8), pp. 997-1005, 2004.

[11] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steel, Jr.,

and M.E. Zosel, The High Performance Fortran Handbook, MIT

Press, Cambridge, MA, 1994.

[12] J. Lebak, J. Kepner, H. Hoffmann, and E. Rutledge, “Parallel

VSIPL++: An Open Standard Software Library for High-

Performance Parallel Signal Processing,” Proc. IEEE 93(2), pp.

313-330, 2005.

[13] D.B. Loveman, “High Performance Fortran,” IEEE Parallel

and Distributed Technology: Systems and Applications 1(1), pp.

25-42, 1993.

[14] P. Luszczek, J.J. Dongarra, D. Koester, R. Rabenseifner, B.

Lucas, J. Kepner, J. McCalpin, D. Bailey, and D. Takahashi,

“Introduction to the HPC Challenge Benchmark Suite,” Lawrence

Berkley National Laboratory, Paper LBNL-57493, 25 Apr. 2005.

[15] G. Morrow and R. van de Geijn, “A Parallel Linear Algebra

Server for Matlab-Like Environments,” Proc. ACM/IEEE Conf on

Supercomputing, Orlando, FL, 7-13 Nov. 1998.

[16] Message Passing Interface (MPI), http://www.mpi-forum.org/

[17] J. Nieplocha, R.J. Harrison, M.K. Kumar, B. Palmer, V.

Tipparaju, and H. Trease, “Combining Shared and Disitrbuted

Memory Models: Approach and Evolution of the Global Arrays

Toolkit,” Workshop on Performance Optimization for High Level

Languages and Libraries (POHLL-02), Int. Conf. on

Supercomputing, New York, NY, 22-26 June, 2002.

[18] R.W. Numrich and J. Reid, “Co-Array Fortran for Parallel

Programming,” ACM SIGPLAN Fortran Forum 17(2), pp.1-31,

1998.

[19] A. Reuther et. al., “LLGrid: Enabling On-Demand Grid

Computing with gridMatlab and pMatlab,” Proc. of High

Performance Embedded Computing Workshop (HPEC 2004),

Lexington, MA, 28-30 September, 2004.

[20] M.E. Zosel, “High Performance Fortran: An Overview,”

Compcon Spring ’93, Digest of Papers, San Francisco, CA, 22-26

Feb. 1993.

IV 1192

