
THE MATHWORKS DISTRIBUTED AND PARALLEL COMPUTING TOOLS
FOR SIGNAL PROCESSING APPLICATIONS

Ali Behboodian, Silvina Grad-Freilich, Grant Martin

The MathWorks, Inc.
3 Apple Hill Drive, Natick, MA, 01760 USA

ABSTRACT

As requirements for technical computing applications
become more complex, engineers and scientists must solve
problems of increasing computational intensity that
frequently outstrip the capability of their own computers.
Some are distributed applications (also called coarse-
grained or embarrassingly parallel applications), where the
same algorithm is independently executed over and over on
different input parameters. Others consist of parallel (or
fine-grained) applications, which contain interdependent
tasks that exchange data during the execution of the
application. This article introduces the distributed and
parallel computing capabilities in The MathWorks
distributed computing tools and provides examples of how
these capabilities are applied to signal processing
applications.

Index Terms— Distributed algorithms, parallel processing,
computation time, distributed computing

1. INTRODUCTION TO THE MATHWORKS
DISTRIBUTED COMPUTING TOOLS

Technical computing applications demand increasing
computing resources as the complexity of algorithms and
the size of data sets continue to grow. Engineers and
scientists who have traditionally run problems on local
computers are experiencing unacceptably long run-times or
are unable to fit an entire data set into their computer’s
memory. Commercial off-the-shelf (COTS) computer
clusters and multiprocessor, multicore computers now
provide affordable high-performance computing
environments that help technical computing users to address
these limitations. However, taking advantage of distributed
environments requires the user to divide up a problem so
that different processors can simultaneously work on
separate parts of the problem.

Some problems are called distributed or coarse-grained
because they can be segmented easily to run on several

nodes without communication, shared data, or
synchronization points between the nodes. Parameter
sweeps and Monte Carlo simulations are two examples of
applications that often fall into this category. Other
applications, called parallel or fine-grained applications, are
far more difficult to segment. These applications are
difficult to run on local computers because they involve
more data than can fit into the computer’s memory, and this
data cannot be broken up easily into independent pieces.
Even when a large set of data can be squeezed into available
memory, there is rarely enough memory left over to do any
significant computation. The solution is to have multiple
processors working on distinct portions of the complete data
set with a considerable amount of interim communication
among the processors.

Figure 1: Distributed computing configuration.

The MathWorks has responded to this need by providing
distributed computing tools that make it possible to develop
distributed and parallel MATLAB® applications
interactively and to distribute complete Simulink® models
for execution in a cluster or in a multicore or multiprocessor
computer.

Users can now prototype applications in MATLAB and use
Distributed Computing Toolbox functions to define jobs
that are made up of a series of independent or

IV 11851424407281/07/$20.00 ©2007 IEEE ICASSP 2007

interdependent tasks. A task is simply a unit operation, such
as a MATLAB function or complete Simulink model.

MATLAB Distributed Computing Engine schedules and
executes the job on available workers, which are MATLAB
processes running on a cluster. In turn, each worker
executes a task within a job by calling the specific
MATLAB function specified by the task, passing the
appropriate input data to the function and producing a
result. The results are then made available for retrieval.

The distributed computing tools allow users to develop
distributed or parallel applications using the full MATLAB
language and most toolboxes. Each worker requires only the
MATLAB engine license; separate toolbox and blockset
licenses are not required. Workers can execute jobs that use
any eligible MATLAB toolboxes and Simulink blocksets
for which users are licensed in their computers.

2. DISTRIBUTED COMPUTING APPLICATIONS

Distributed applications that can be segmented into different
independent tasks can be very easily distributed to cluster
nodes. In the simplest case, where the problem can be
divided into tasks consisting of the same function with the
same number of input and output variables, a single
function call parallelizes the problem for a distributed
computing environment.

>> result = dfeval(@myFunction, {1 2 3 4 5})

In more complex cases, only several lines of code are
required. A typical Distributed Computing Toolbox client
session includes the following steps:

1. Find a job manager or scheduler.
2. Create a job.
3. Create tasks.
4. Submit a job to the job queue.
5. Retrieve the job’s results.

2.1. Application of distributed computing to bit error
rate calculation in MATLAB

A typical example of a distributed application is the
calculation of the bit error rate (BER) in a communications
system under different Signal to Noise Ratios (SNR). The
BER is the percentage of bits that are received in error at a
receiver relative to the total number of bits received in a
communications system. Calculation of BER usually takes a
relatively long time for high SNR condition. As a result,
repetitive simulations of different receiver structures can be
quite hectic.

An example that shows the advantage of distributed
computing over single machines for calculation of BER is
included in the demos that ship with Distributed Computing
Toolbox. This demo simulates four different equalizers: a
linear equalizer, a decision feedback equalizer (DFE), and a
maximum likelihood sequence estimation (MLSE)
equalizer. The MLSE equalizer is first invoked with perfect
channel knowledge, then with a straightforward but
imperfect channel estimation technique. We choose to let
one task consist of calculating the BER for a single
equalizer type and a range of SNRs. Because our cluster has
four workers, we have four different tasks, one for each
equalizer.

Figure 2: BER comparison.

The results are depicted in Figure 2. This simulation runs in
81 seconds on a single node of our cluster and in only 25
seconds on all the four nodes using distributed computing.
In this example our cluster consists of four machines that
are connected together to create a cluster.

3. PARALLEL COMPUTING APPLICATIONS

Now let’s look at the more challenging task of programming
parallel applications in which the same instruction set may
operate over a large data set spread across labs (workers
participating in a parallel computation). The MathWorks
distributed computing tools support two alternative ways of
prototyping parallel applications: message passing
constructs and global array semantics.

3.1. Message passing constructs

The distributed computing tools provide functions for inter-
task communication. Based on the Message Passing
Interface (MPI) standard, these functions are available for

IV 1186

point-to-point and broadcast communications. They give
users explicit control over the parallelization scheme for
their applications.

However, programming with MPI also requires users to pay
attention to low-level details such as distributing data in a
way to minimize communication, determining which
processor data needs to be delivered to or received from,
etc. This level of detail is not present in serial programming
and makes the transition from serial to parallel
programming very difficult.

3.2. Parallel for loops and global array semantics

Distributed Computing Toolbox and MATLAB Distributed
Computing Engine provide support for parallel for loops
and global array semantics via distributed arrays.
Distributed arrays store segments of an array on
participating labs and are visible as regular arrays on all the
labs. Each lab has its own array segment to work on yet has
access to all segments of the array. As a result, users can
perform array operations such as indexing, matrix
multiplication, decomposition, and transforms directly on
the arrays. With version 3.0, the distributed computing tools
support more than 150 overloaded MATLAB functions for
distributed arrays, including linear algebra routines based on
ScaLAPACK.

Distributed arrays enable users to develop parallel
applications without having to manage the low-level details
of message passing. Let’s suppose that a user wants to
transpose a large matrix that is distributed in many
processors. Using MPI, this would require a tedious, error-
prone programming task. With the new parallel computing
capabilities, programmers simply use the transpose function
on a distributed array:

>> E = D’

A MATLAB user views a distributed array as a single
global array rather than multiple, independent arrays located
on separate processors. The ability to view related data
distributed across processors as a single array closely
matches the serial programming model and makes parallel
programming much easier. In general, few changes are
required to convert the MATLAB serial code to parallel.
The programmer doesn’t have to worry about the low-level
programming details because communication takes place
automatically and arrays are automatically redistributed
when necessary. Reducing the size of the array that each lab
has to store and process enables more efficient use of
memory and faster processing, especially for large data sets.
Access to the local segment is faster than to a remote
segment, because the latter requires sending and receiving
data between labs and thus takes more time.

Parallel for loops or parfor commands let users
distribute similar but independent tasks over a set of labs.
Each lab operates on a subset of the loop indices. This
command eliminates the need to manually create and submit
jobs and retrieve results. It uses the familiar for loop
syntax in MATLAB and is ideal for parameter sweeps and
similar tasks. No communication can occur between
workers during the execution of the loop.

It is readily clear that parallel computing requires a certain
amount of overhead. As such, parallel computing is not
efficient on small array sizes. (Small is a relative term and it
depends on the processing power and memory size of a
machine.) Figure 3 depicts the result of executing two-
dimensional FFT on matrices of different sizes. We apply an
FFT of size 2L to the rows and then columns of a matrix of
size 2Lx2L where L varies between 5 to 13. As the size of
the matrix grows, the required processing time increases.
However it is not until the size of the matrix grows to 2-
10x210 that parallel computing pays off. The machine used in
this experiment was a quad processor 32-bit Windows
machine with 8 GB of RAM.

3.3. Interactive execution

The interactive parallel mode (or pmode) of MATLAB
makes it possible to work interactively with a parallel job
running simultaneously on several labs. Commands typed at
the pmode prompt are executed on all labs at the same time.
Each lab executes the commands in its own workspace on
its own variables. Results are returned immediately to the
command window. The pmode makes it possible for users
to follow the normal MATLAB workflow with parallel
algorithms and can be used for iterative exploration, design,
and problem solving.

Figure 3: Comparison of processing time for computing
2D FFT between single machine and a cluster.

IV 1187

3.4. Application of parallel computing to synthetic
aperture radar (SAR) imaging.

Synthetic aperture radar (SAR) image formation is a typical
parallel application. For efficient digital processing and
image formation, engineers often use a traditional technique
known as polar format processing to reformat SAR phase
history data from a polar grid to a Cartesian grid. This
polar-to-rectangular “re-gridding” operation is the most
processing-intensive portion in SAR image formation. The
2-D operations involved are not easily separable, nor are
they independent such that coarse-grained techniques can be
used.

For this particular example, the SAR image formation
algorithm used is based on the Chirp Z-Transform (CZT).
This method offer advantages in image quality because it
uses the entire frequency spectrum instead of a zero-padded
rectangle or inscribed rectangle. Also, the CZT does not
degrade the image with inexact interpolations because there
are no interpolations required to resample the grid. The
shortcoming of the CZT, however, is that it requires three
FFTs of two times the length of the input sequence, and also
two complex multiplies of that same length. This can be
more inefficient than an interpolation and requires
significantly more memory to implement.

To test the MATLAB based CZT image formation, we used
phase history data, which is approximately 2000 by 4000
samples of complex, double-precision data (120 MB). This
size image can be read into MATLAB, but processing is
difficult because of memory concerns. This processing
limitation is overcome by using the distributed array
function to split the image into four sections which will be
operated on in parallel. The Chirp Z-Transform is then
performed along the rows of the matrix, followed by an FFT
along the columns to complete the image formation process.
If we distribute the array column-wise, the CZT will require
communication among the labs, and the final FFT can be
computed in parallel. Equivalently, we can distribute the
array row-wise such that the CZT can occur in parallel,
while the final FFT requires communication across the labs.
The pseudo code for this process follows:

im = LoadImage();

% Create a distributed array
im_distrib = distribute(im,rowdistrib);

% CZT setup
[A, W, m] = createCZTConstants();

% Azimuth Processing (Parallel)
parfor i = 1:numrows

% Make local variables
x = local(im_dist(i,:));

% CZT is a Fast convolution
y = fastconvCZT(x,A,W,m);

im_dist(i,:) = y;
end

% Range Processing (Needs to Communicate)
ImageOut = fft(im_dist,[],1);

This pseudo code was implemented with both row and
column distribution of the input image, and the difference
between the time and memory required was found to be
negligible. More noticeable was the difference between the
Distributed Computing Toolbox implementation and the
implementation on a single machine. The single machine
required twice the amount of time to run (~9.45 sec) versus
(4.95 sec) with the DCT. (The machine used was the quad-
core machine deployed in the 2D-FFT example). These
times are consistent with our 2-D FFT results and should
also scale as the images become larger with finer
resolutions. Also worth noting is that the amount of memory
required to process the 120 MB image on the DCT was split
onto four labs. This is important because as the initial data
grows in size, this problem may become unfeasible on a
single machine. Thus Distributed Computing Toolbox can
provide a viable memory management solution.

4. CONCLUSION

Using the distributed computing tools, engineers and
scientists can now develop signal processing applications in
MATLAB and divide them into tasks that are evaluated
remotely on cluster nodes. With the release of Version 3,
the distributed computing tools also provide tools to
interactively prototype, develop, and debug parallel signal
processing applications using MATLAB. The tools can also
distribute complete Simulink models for execution in a
cluster. The tools can execute algorithms that include any
MATLAB toolbox or Simulink blockset for which the user
is licensed on the client machine; there is no need to
purchase additional toolbox or blockset licenses for the
cluster nodes. Because only a few changes are required to
convert a serial program to a parallel one, engineers and
scientists without special programming expertise will now
be able to fulfill the promise of parallel computing by
solving larger problems in less time.

5. REFERENCES

[1] Hahn Kim and Julia Mullen, “Introduction to Parallel
Programming and pMatlab v0.7," MIT Lincoln Laboratory.

[2] Grant Martin, Armin Doerry, “SAR Polar Format
Implementation with MATLAB,” Sandia National Laboratories
Report SAND2005-7413, November 2005.

IV 1188

