
SURVEY OF PARALLEL MATLAB TECHNIQUES AND APPLICATIONS 

TO SIGNAL AND IMAGE PROCESSING 

Ashok Krishnamurthy, John Nehrbass, Juan Carlos Chaves and Siddharth Samsi 

Ohio Supercomputer Center, Columbus, OH 

{ashok, nehrbass, chaves, samsi}@osc.edu 

ABSTRACT

We present a survey of modern parallel MATLAB 

techniques.  We concentrate on the most promising and well 

supported techniques with an emphasis in SIP applications. 

Some of these methods require writing explicit code to 

perform inter-processor communication while others hide 

the complexities of communication and computation by 

using higher level programming interfaces. We cover each 

approach with special emphasis given to performance and 

productivity issues.  

Index Terms— Distributed algorithms, Distributed 

computing, Array signal processing, Image processing 

1. INTRODUCTION 

There is an increasing recognition that High-Level 

Languages, and in particular scripting languages such as 

MATLAB, provide enormous productivity gains in 

developing technical and scientific code [1].  MATLAB is 

widely used in academia, the government and industry 

(almost 1 million users by some estimates) and has emerged 

as an important tool used by many Signal and Image 

Processing (SIP) scientists and engineers.  The attraction of 

MATLAB is that it combines an easy-to-use scientific 

programming language with a common environment for 

prototyping, coding, and visualization.  A wide variety of 

add-on toolboxes addressing a number of specialized 

application areas, along with a very large and active user 

community [2], make MATLAB the software platform of 

choice for many SIP applications.   

Many widely used SIP algorithms are also 

computationally intensive and can benefit from 

parallelization and execution on High Performance 

Computers (HPCs).  In a typical scenario, a scientist or 

engineer develops a prototype MATLAB algorithm to be 

run on a limited computational resource, such as a single 

processor PC or workstation.  MATLAB is chosen over 

other traditional languages because 1) it is substantially 

easier to collaborate with non computer science experts, 

allowing non-experts to make changes and experiment; 2) it 

is interpretive and interactive; 3) it has excellent debugging 

capabilities; 4) it has integrated help with built-in example 

code; and 5) and the time to implementation is typically 

several orders of magnitude quicker.   

The next step is to modify the simulation parameters to 

solve more realistic problems.  This typically increases 

memory requirements beyond what can be accessed on the 

single processor PC or workstation, or it results in long-

running simulations that decreases productivity or may 

render the simulation impractical.  The traditional approach 

to handle these large problems was to translate the 

MATLAB code into C / C++ or FORTRAN, parallelize the 

resulting code using MPI or OpenMP, and then execute it 

on a HPC platform.  Needlessly to say this is an expensive, 

error-prone and time-consuming activity.  Moreover, it is 

very difficult to propagate changes from the MATLAB code 

to the corresponding C code, especially since a single line of 

MATLAB code may correspond to many lines of C code.   

Fortunately, with the HPC emphasis rapidly shifting to 

high productivity metrics, in which productivity and value 

are more important than raw performance [3] this scenario 

is evolving. Time-to-solution is becoming one of the major 

metrics of value to technical users. Time-to-solution 

includes: time to cast the physical problem into suitable 

algorithms; time to write and debug the computer code that 

expresses those algorithms; time to optimize the code; time 

to compute the desired results; time to analyze and visualize 

those results; and time to refine the analysis into improved 

understanding of the original problem that enables scientific 

or engineering advances.   

In this paper, we survey several modern parallel 

MATLAB techniques that promise to make HPC easier and 

to decrease time to solution by promoting ease of use, code 

reusability, transparent access to highly optimized libraries 

(BLAS, LAPACK, FFTW, etc), portable performance and 

isolation from the inherent complexities of HPC low level 

programming (C, FORTRAN, MPI, OpenMP).  This makes 

these parallel techniques a very attractive option to address 

the complex computational and analysis challenges of the 

SIP and other communities.  

IV  11811424407281/07/$20.00 ©2007 IEEE ICASSP 2007



We concentrate on the most promising and well supported 

techniques with an emphasis in SIP application examples, 

namely: MatlabMPI [4], bcMPI [5], pMatlab [6], Star-P [7] 

and the MATLAB Distributed Computing Toolbox (DCT) 

[8]. MatlabMPI and bcMPI require writing code explicitly 

to perform inter-processor communication at the HPC 

platform. In contrast, pMatlab, StarP and the DCT provide 

high level constructs that hide the complexities of inter-

processor communication from the end user.  

2. MatlabMPI 

MatlabMPI, developed at MIT Lincoln Labs is an 

implementation of a subset of the MPI standard [9].  The 

popular MPI look and feel has been implemented using just 

the MATLAB language, resulting in a compact and portable 

implementation, which can be run anywhere MATLAB is 

available. Another interesting characteristic of MatlabMPI 

is that implements MPI communication on top of standard 

MATLAB file I/O. This requires a shared file system 

accessible by all processors. MATLAB software requires a 

license per computational node. Thus if one runs 

MatlabMPI on a HPC shared memory machine, only one 

MATLAB license is required to run MatlabMPI 

independently of the number of processors.  However, when 

MatlabMPI is run on a distributed system, such as a Linux 

cluster, a license for each multi CPU node is required.  A 

way to avoid this limitation is to use intelligent compiler 

configuration tools for MatlabMPI developed at OSC. 

These tools turn the MatlabMPI scripts into stand alone 

executables that require no MATLAB licenses to run in 

parallel. 

2.1. MatlabMPI Architecture 

MatlabMPI is a set of MATLAB scripts using 

approximately 300 lines of MATLAB code. MatlabMPI 

implements the basic six functions that are the core of the 

MPI point-to-point communications standard, namely: 

MPI_Init,  MPI_Comm_size(communicator),  MPI_Send 

(destination, tag, comm, M_variable), MPI_Recv (source, 

tag, communicator),  MPI_Finalize, MPI_Comm_rank 

(communicator).

The basic communicator MPI_COMM_WORLD is a 

parameter for most MPI calls and is defined by MatlabMPI 

at the initialization phase of every MatlabMPI program. It 

contains all the information about the parallel environment 

where the program is operating.  Processes within the 

communicator are assigned numbers (ranks) 0 to n-1. 

MPI_COMM_WORLD is implemented as a MATLAB 

structure, which contains process rank, the number of 

processes, the group members, and the default file I/O 

directory. An important attribute of this technology is that 

the messages can be any valid MATLAB variable. This 

presents a great advantage over regular MPI as MATLAB 

variables could be very complex objects (e.g. 

multidimensional matrices). These messages are transferred 

from one processor to another in a synchronous transfer, 

that is, the call does not return until the message is sent or 

received.

2.2. MatlabMPI for SIP Applications 

MatlabMPI has been successfully applied to a variety of SIP 

applications. For example, we successfully parallelized an 

application for the formation of wide-bandwidth and wide-

beamwidth SAR imagery using MatlabMPI.  Also, we 

implemented in MatlabMPI two SIP related algorithms: a 

Support Vector Machine and a Content-Based Image 

Compression algorithm.  Another application successfully 

parallelized was an image matching code.  

2.3. Sample MatlabMPI code 

As previously mentioned MatlabMPI requires writing MPI 

code explicitly to perform inter-processor communication. 

The following is a code snippet taken from a typical SIP 

application parallelized using MatlabMPI:  

% send to cpu=0 and sum f_back -- partial sum 

if(my_cpu>0) 

    tag=my_cpu; 

    MPI_Send(0,tag,comm,f_back) 

else

    for i=1:(ncpu-1) 

        tag=i; 

        f_part=MPI_Recv(i,tag,comm); %blocking 

        f_back=f_back+f_part;     end 

% Remove carrier in range domain 

    kxc=(kxmax+kxmin)/2; 

    f_back=f_back.*exp(-cj*x(:)*kxc*ones(1,ny)); 

3. bcMPI 

bcMPI developed by the Blue Collar Computing software 

initiative at OSC, implements MPI extensions for MATLAB 

and Octave [10], a open source alternative to MATLAB. 

bcMPI is extensible (the core library makes it easy to add 

additional MPI functions and interpreter data types), 

portable (no dependencies on any machine, operating 

system, or specific MPI library implementations) and most 

importantly scalable (uses efficient algorithms and takes 

advantage of native MPI library and communications 

hardware). Therefore, bcMPI can be used not only for 

embarrassingly parallel applications but also for more 

generic SIP problems where communication may be 

significant.   

bcMPI consists of a core library (libbcmpi) that 

interfaces to the MPI library, a toolbox for MATLAB 

(mexmpi), and a toolbox for Octave (octmpi). Similarly to 

MatlabMPI, bcMPI implements a subset of the MPI API. In 

contrast to C or FORTRAN the MATLAB language 

bindings are simpler than the standard bindings for these 

languages. For example, data types are detected at run time, 

IV  1182



received data is returned by value, and data communication 

functions accept variable number of parameters. Where 

possible, compatibility with MatlabMPI has been 

maintained. However, it is important to notice that unlike 

MatlabMPI, bcmpi uses blocking sends. 

3.1. bcMPI for SIP Applications 

Even though bcMPI was officially released recently a 

complex SIP application has already been ported to bcMPI. 

The 2006 Benchmark Challenge Executable Specification 

of DARPA's High Productivity Computing Systems (HPCS) 

Scalable Synthetic Compact Applications (SCCA) #3 on 

Sensor Processing and Knowledge Formation and File I/O 

has been ported to bcMPI at OSC [5]. 

4. pMatlab 

pMatlab also developed by MIT Lincoln Labs is a parallel 

programming toolbox that overlays global array semantics 

on top of the MATLAB language. It uses by default 

MatlabMPI as its underlying communication library. 

However, in principle it can use much more efficient 

technologies for communication such as OSC’s bcMPI. A 

user creates distributed matrices (denoted as dmats) in 

pMatlab by using the existing MATLAB matrix 

constructors, but by passing additional arguments (denoted 

as maps) that specify how to lay out the matrices in a grid of 

MATLAB processes. pMatlab provides many overloaded 

operators and regular communication primitives for 

distributed matrices many of them specially targeted toward 

SIP applications. 

4.1. Sample pMatlab code 

The following is pMatlab code snippet that performs a 

prototypical SIP function: a parallel FFT. The full example 

and many more are provided in the pMatlab official 

distribution. Additional information about pMatlab is 

presented in the ICASSP 2007 paper “pMatlab: Parallel 

Matlab Library for Signal Processing Applications”.  

N = 2^10; % NxN Matrix size. 

PARALLEL = 1; % Turn parallelism on or off. 

pMatlab_Init;  % Initialize pMatlab. 

Ncpus = pMATLAB.comm_size; 

my_rank = pMATLAB.my_rank; 

mapX = 1;  mapY = 1;  % Create Maps. 

if (PARALLEL) 

% Break up channels. 

mapX = map([1 Ncpus], {}, 0:Ncpus-1 ); 

mapY = map([1 Ncpus], {}, 0:Ncpus-1 ); end 

% Allocate data structures. 

X = rand(N,mapX); 

Y = zeros(N,mapY); 

Y(:,:) = fft(X);  % Do fft.  Changes Y from real to complex. 

disp('SUCCESS'); 

pMatlab_Finalize;  % Finalize the pMATLAB program 

5. Star-P 

Star-P by Interactive Supercomputing Corporation is a 

commercially available high level solution for enabling 

parallelism in MATLAB programs. Star-P is a sophisticated 

client-server parallel computation tool that consists of two 

main components: an interface to an existing high-level 

desktop environment such as MATLAB (the client) and a 

computational kernel that runs on a HPC platform (the 

server). A user creates distributed matrices from within 

MATLAB running at the PC environment simply by adding 

a *p to one or more of its dimensions. MATLAB existing 

mathematical operators on regular (non-distributed) 

matrices are then overloaded to operate on distributed 

matrices on the parallel machine. A powerful and useful 

characteristic is that these overloaded operators implicitly 

propagate parallelism. Therefore, operations on distributed 

matrices lead to other distributed matrices.  

The computational kernel in Star-P is written with C++ 

and MPI, and the computations are performed either with 

existing high-performance parallel numerical libraries such 

as ScaLAPACK [11] or via custom implementations. This 

allows obtaining performance for many commonly used SIP 

procedures comparable to the optimized programs written in 

low-level languages (e.g. C and MPI) but with significantly 

more productivity (using fewer lines of code). 

5.1. Sample Star-P Code 

The following Star-P code written on the PC MATLAB 

client computes the inverse of a relatively large matrix (e.g. 

a covariance matrix) automatically distributed by Star-P on 

a HPC parallel platform acting as the computational server: 

>> x=rand(2000*p,2000*p); 

>> xinv=inv(x); 

>> xo=x*xinv; 

>> max(max(xo)) 

ans = 1.0000 

>> ppwhos 

Your variables are; 

ans 1x1 8 double array 

x 2000px2000p 32000000 double array 

xinv 2000px2000p 32000000 double array 

xo 2000px2000p 32000000 double array 

Notice that to parallelize this familiar MATLAB code 

for the parallel processors, just the *p construct was added 

to tell MATLAB to invoke Star-P to distribute the 2000 

elements of rand to the parallel processors memory space. 

As indicated in the ppwhos trace (the Star-P analog to 

MATLAB whos) the x variable becomes a dense matrix 

residing in the distributed memory (ddense). It is 

importance to notice that the subsequent inverse and 

multiplication operations inherit distribution from their 

variables and respective results and become ddense. In 

contrast, when the result of an operation results in a scalar 

variable, this variable is placed on the front-end as 

IV  1183



illustrated by the variable ans (it does not make sense to 

distribute a scalar value). Therefore the *p mechanism 

offers straightforward parallelization. Additional 

information about the Star-P system is presented in the 

ICASSP 2007 paper “StarP: An interactive supercomputing 

environment”. 

6. MATLAB DCT 

Another commercially available solution is the Distributed 

Computing Toolbox (DCT) by MathWorks, Inc. The DCT 

lets MATLAB users distribute and control a set of 

computational tasks across several computational workers 

running under the Distributed Computing Engine (DCE). In 

the latest version, the workers are simply MPI processes, 

and the toolbox provides a limited MPI consisting of 

commands to perform non-blocking sends, blocking 

receives, broadcasts, and global reductions. The toolbox 

also contains additional job-control functions. Most 

importantly, the DCT supports high level constructs such as 

parallel for loops and distributed arrays (global array 

semantics), more than 150 overloaded math functions, and 

full ScaLAPACK support. Another advantage of the DCT is 

that it lets users utilize existing MATLAB and Simulink 

toolboxes and blocksets, provided the data is available 

locally. 

6.1. Sample MATLAB DCT Code 

The following MATLAB DCT code snippet implements a 

simple sine wave function computation in parallel: 

%Create a 1-by-100 distributed array of 0s.  

%With 4 labs, each lab has a 1-by-25 segment 

P>> D = zeros(1,100,distributor) 

%Populate the array with a sine wave, each lab does 1/4th. 

P>> parfor i=1:100 

D(i) = sin(i*2*pi/100); end; 

%Gather the array so all contained in lab workspaces. 

P>> P = gather(D); 

%Transfer from the workspace of lab 1 to the client 

%Plotting the array from the client.  

%The | character means execute only in the client. 

P>> |pmode lab2client P 1 

P>> |plot(P) 

Additional information about MATLAB DCT is 

presented in the ICASSP 2007 paper “MATLAB 

Distributed Computing Toolbox and applications in signal 

processing”. 

7. CONCLUSIONS 

In this paper we have surveyed five contemporary 

approaches that provide parallel capabilities to MATLAB. 

All of them can and have been applied with different 

degrees of portability, performance and productivity to 

prototypical SIP applications. MatlabMPI and bcMPI are 

MPI based solutions that allow greater control of 

performance considerations but required writing explicit 

communication code. bcMPI take advantage of native MPI 

libraries and communications hardware. On the other hand 

MatlabMPI uses the file system for communication. In 

contrast to the MPI based solutions, pMatlab, Star-P and 

DCT provide high level interfaces that facilitated porting 

and development of parallel applications but that may 

sacrifice performance in pursuit of productivity. Several 

tradeoffs are possible but it is clear that powerful 

alternatives are available for the SIP practitioner for 

parallelization of MATLAB code. 

ACKNOWLEDGMENTS

This publication was made possible through support 

provided by DoD HPCMP PET activities through 

Mississippi State University under contract. The opinions 

expressed herein are those of the author(s) and do not 

necessarily reflect the views of the DoD or Mississippi State 

University. 

8. REFERENCES 
[1] A. Edelman, P. Husbands, S. Leibman, “Interactive 

Supercomputing’s Star-P Platform: Parallel MATLAB and MPI 

Homework Classroom Study on High Level Language 

Productivity,” HPEC, 2006 

[2] MATLAB Central: http://www.mathworks.com/matlabcentral/ 

[3] HPCS: http://www.highproductivity.org/ 

[4] MatlabMPI: http://www.ll.mit.edu/MatlabMPI/ 

[5] bcMPI: http://www.osc.edu/hpc/software/apps/bcmpi.shtml 

[6] pMatlab: http://www.ll.mit.edu/pMatlab/ 

[7] Star-P: http://www.interactivesupercomputing.com/ 

[8] DCT: http://www.mathworks.com/products/distribtb/ 

[9] MPI standard: http://www.mpi-forum.org/ 

[10] GNU Octave: http://www.gnu.org/software/octave/

[11] ScaLAPACK: http://www.netlib.org/scalapack/ 

IV  1184


