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ABSTRACT

Independent Components Analysis is increasingly being used

on EEG/MEG data as a preprocessor to source localization

methods such as beamforming and dipole fitting. Here we

show how ICA can be used to perform source localization

directly. The proposed method consists of dimension re-

duction preprocessing, estimating and inverting the reduced-

dimension demixing matrix, and then correlating the columns

of the resulting mixing matrix estimate with the columns of

the forward model. The results section shows a compari-

son of the proposed method and a scalar minimum variance

beamformer, where it is shown that the proposed ICA-based

method has less localization error.

Index Terms— Biomedical electromagnetic imaging,

Electroencephalography, Separation

1. INTRODUCTION

Since its inception in the late 1980’s Independent Compo-

nents Analysis (ICA) has been used for a variety of appli-

cations. The list of applications includes blind source sep-

aration (BSS) [1], identification, angle of arrival estimation,

deconvolution, preprocessing for feature extraction, and de-

noising/artifact rejection. Unlike for many of the applica-

tions in this list, reasonable estimates of the forward (mixing)

model is known or can be estimated for applications involv-

ing electroencephalographic (EEG) and magnetoencephalo-

graphic (MEG) data. The forward model, which is a function

of the composite lead field matrix, can be used for estimating

the spatial locations of each source. It is becoming common-

place to use ICA preprocessing on EEG and MEG data in an

attempt to directly extract meaningful components, such as

evoked responses, or to remove unwanted interference, such

as cardiac artifacts. The ICA preprocessing is performed in

hopes of improving the subsequent source localization. In-

stead of using ICA as a preprocessor, we show how source

localization can be directly performed using the ICA solution

and the composite lead field matrix.

2. SOURCE LOCALIZATION

For MEG data, if we assume a homogeneous spherical con-

ductor model, the (M ≥ 1)measured magnetic field at time n

is given by,

bn = LcΨ

[
sn

xn

]
+ Byn + ηn (1)

whereLc is the (M≥DQsx) composite lead field matrix (de-
fined below), Ψ is the (DQsx ≥ Qsx) orientation matrix, sn

is the (Qs ≥ 1) vector of neural sources of interest (hereafter
referred to as neural sources), xn is the (Qx ≥ 1) vector of
neural sources of no interest (hereafter referred to as neural

interference), B is a (M ≥ Qy) transfer function matrix, yn

is the (Qy ≥ 1) vector of non-neural interference, the term
“source” is used for either a neural source, a neural interfer-

ence, or a non-neural interference as determined by context,

ηn represents the noise and model error, and whereM is the

number of sensors, D equals the rank of LcΨΨ
T LT

c (3 in

general, but 2 for our assumptions), and Qsx = Qs + Qx is

the number of neural sources/interference. Due to the struc-

ture of the orientation matrix the product of Lc andΨ can be

expressed as,

LcΨ = [L1η1
L2η2

. . . LQsx
η

Qsx
] (2)

where each (M≥D) lead field matrixLi represents the trans-

fer function from any specified spatial location to the sensors

(the elements of which depend only on the spatial location of

source i relative to the sensor locations) and each (D≥1) vec-
tor ηi represents the orientation of source i. The same model

also holds for EEG data (although the lead field matrices dif-

fer for MEG and EEG data).

The lead field matrices are known, whereas the orientation

matrix must be estimated from the data. Notice that (1) im-

plicitly requires knowledge of the source locations. Although

the lead field matrices are known for any spatial location, it

is not known a priori which spatial locations correspond to

theQsx sources. One way to perform source localization is to

create a dense grid of Q̄sx >> Qsx potential source locations

and then to scan each potential source location. The spatially
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oversampled data can be expressed as,

bn = ΨLc
ΨΨ

[
Ψsn

Ψxn

]
+ Byn + ηn (3)

where ΨLc is a (M≥DQ̄sx)matrix, ΨΨ is a (DQ̄sx≥Q̄sx)ma-
trix, Ψsn is a (Q̄s ≥ 1) vector, Ψxn is a (Q̄x ≥ 1) vector, Q̄sx =
Q̄s +Q̄x, and where Q̄s≥Qs elements ofΨsn and Q̄x≥Qx el-

ements of Ψxn have zero power. The dimensions ofB and yn

do not change since the forward model for non-neural sources

is unknown. In beamforming the orientation vector is esti-

mated at each voxel and then the power of the source at that

location is estimated. Dipole fitting can also be thought of

in this manner with the primary exception that beamforming

considers each voxel separately, whereas dipole fitting con-

siders the voxels simultaneously. Hence, source localizations

using beamforming generally have non-zero power at all Q̄sx

voxels (ideally, for beamforming, most of the energy is con-

centrated in Qsx locations in source space), whereas dipole

fitting has non-zero power at only Qsx voxels.

3. PROPOSED METHOD FOR SOURCE
LOCALIZATION

The proposed method is based on a BSS solution. Using BSS

terminology the matrix [LcΨ B] is known as the mixing ma-
trix, which we denote asA, and the concatenation of the neu-

ral sources, neural interference, and non-neural interference

is known as the source vector, which we denote as un (which

is assumed to have zero mean). Hence, the data can be ex-

pressed as,

bn = Aun + ηn (4)

whereA is size (M ≥Q) andQ = Qs +Qx +Qy . Likewise,

the source estimates are given by,

ûn = W 2W 1bn (5)

whereW1 is a (Q̂ ≥ M) projection matrix found using any
desired dimension-reduction method and W2 is a full-rank

(Q̂≥ Q̂)matrix found using any desired BSS algorithm (here
we use ICA to perform separation).

To simplify the explication we will temporarily assume

that there is no noise and that we know Q. We also make sev-

eral usual assumptions, e.g., the mixing is linear and memory-

less, there are at least as many sensors as sources (M ≥ Q),

and the sources are mutually statistically-independent and

non-Gaussian. In this case it is well-known that perfect esti-

mation of both un and A (up to an arbitrary scaling and per-

mutation) occurs when the columns ofW1 are the eigenvec-

tors of E[bnbT
n ] having non-zero eigenvalues andW2 is such

that the source estimates are statistically independent. The

estimate of A is found using the pseudo-inverse ofW2W1,

which takes the form,

Â = (W 2W 1)
† �

= W T
1
W T

2

(
W 2W 1W

T
1
W T

2

)∗ 1

= W T
1
W T

2
W ∗ T

2

(
W 1W

T
1

)∗ 1

W ∗ 1

2

= W T
1
W ∗ 1

2

(6)

since the columns ofW1 are ortho-normal andW2 is invert-

ible. Due to the indeterminacies of BSS the pseudo-inverse

ofW2W1 at the separating solution equalsDPA, whereD

is a diagonal matrix and P is a permutation matrix. As dis-

cussed below knowledge of DPA is sufficient to perform

neural source localization using the proposed method.

The proposed column correlation method involves two

steps. First, we estimate the orientation vector at each voxel.

Second, for each voxel we express our level of confidence that

a source resides at that voxel. The confidence level for voxel

j is determined using the following similarity metric,

ρj = max
i

ρij

ρij =
|Â

T

i Ψj |(
Â

T

i ÂiΨ
T
j Ψj

)1/2

(7)

where Âi is the ith column of Â andΨj is the jth column of
ΨLc

ΨΨ. This approach implicitly assumes that there is a source

at every voxel thus allowing for the possibility that the pro-

posed method can describe distributed sources (two or more

point sources having the same time course). The proposed

method is similar to beamforming in this respect.

The orientation of voxel j is chosen as the orientation that

maximizes (7). This can be written as,

η∗
j =max

η
j

|Â
T

i Ψj |(
Â

T

i ÂiΨ
T
j Ψj

)1/2

=max
η

j

Ψ
T
j ÂiÂ

T

i Ψj

Ψ
T
j Ψj

=max
η

j

ηT
j LT

j ÂiÂ
T

i Ljηj

ηT
j LT

j Ljηj

(8)

since (7) is non-negative, Â
T

i Âi is a positive scalar (which

does not effect maximization), and by substituting Ljηj for

Ψj . Notice that both LT
j ÂiÂ

T

i Lj and LT
j Lj are symmet-

ric and positive semi-definite matrices. Hence, the vector ηj

that maximizes (8) is given by the eigenvector associated with

the largest eigenvalue of the generalized eigenvalue decom-

position (GED) of LT
j ÂiÂ

T

i Lj and LT
j Lj . The maximum

operator causes the map to be segmented into Qs mutually

exclusive and collectively exhaustive regions (not shown here

due to space restrictions). This is unlike dipole fitting, which

IV ­ 1178



selects exactly Qs points of activity on the map and assumes

the remaining voxels are inactive. We also tried, in place

of the maximization operation, taking the mean over i and a

weighted mean over i (where the weight is given by the mean

power of the ith source measured in sensor space). We chose

to maximize over i since it performs better in empirical tests.

Knowledge of DPA is sufficient to perform neural

source localization as long as the matrix ΨLc
ΨΨ is full-column

rank and it includes the true (neural) source locations, which

becomes more likely as Q̄ increases. Recall that each column

of ΨLc
ΨΨ corresponds to a single, known spatial location. With

the assumptions above each column of A should be propor-

tional to one of the columns of either ΨLc
ΨΨ or B, the latter

of which can be ignored for neural localization since it rep-

resents non-neural activity. Since the order of the columns in

(7) is irrelevant the P matrix can be ignored. The D matrix

can also be ignored since (7) does not depend on the norm of

either column, which is the reason we chose the (absolute)

normalized correlation coefficient for the similarity metric.

Notice that the proposed method can be made to be similar to

dipole fitting by selecting for each column i the single voxel

j that maximizes (7).

The lead field matrices are often highly correlated so the

resulting map lacks sharp peaks. Hence, for visualization pur-

poses we suggest subtracting the minimum value of ρj and

then dividing by the maximum value, so that the map takes

values between 0 and 1, and then raising the result to a value

greater than 1. We choose the exponent as the minimum value

required to ensure that less than 2% of the map has an expo-

nentiated correlation larger than 25% of the maximum expo-

nentiated correlation. This has no effect on the locations of

the peaks, but it does change the relative heights of the peaks.

The interference needs to be suppressed since we are

only interested in localizing sn. Likewise, we do not wish

for the noise to negatively effect the localization. The pro-

posed method is robust with respect to non-neural interfer-

ence whenever the columns ofB are nearly orthogonal to the

columns of ΨLc
ΨΨ, as can be seen from (7) whenever a col-

umn of Â is proportional one of the columns of B. Like-

wise, it is robust with respect to noise whenever the columns

of an identity matrix and the columns of ΨLc
ΨΨ are nearly or-

thogonal. Additional suppression is obtained by properly se-

lecting the W1 projection matrix. If the (neural) signal-to-

noise+interference ratio (SNIR) is large or if the noise and in-

terference are spatially uncorrelated and isotropic then PCA

is a good choice for learningW1. Here we assume the data

is collected using the stimulus-evoked paradigm so that we

can use PFA [2] to find an appropriate projection. PFA is able

to suppress the neural and non-neural interference and noise

whether or not the SNIR is large or the noise and interference

are spatially uncorrelated and isotropic.
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Fig. 1. Locations of the 2 sources (≥), the 3 interferences (≥),
and the 275 sensors (O) for a single Monte Carlo trial.

4. RESULTS

We use a total of 250 different synthetically generated

evoked-response datasets, which correspond to 50 Monte

Carlo trials for each of 5 different values of (neural) signal-

to-interference ratio (SIR). Each dataset is 1000 samples in

length, 5/8 of which corresponds to the pre-stimulus period

and 3/8 to the post-stimulus period, and the sampling fre-

quency is 1 kHz. Each neural source has a damped sinu-

soidal time course having a random frequency between 5-

20 Hz, whereas each neural interference has an un-damped

sinusoidal time course. Damping is performed such that

the energy of the neural sources is concentrated within the

post-stimulus period. The number of sensors is M = 275,
the number of neural sources, neural interferences,and non-

neural interferences is Qs = 2, Qx = 3, Qy = 0,
respectively. Figure 1 shows the locations of the neural

sources, neural interference, and sensors for one trial. The

size of each marker indicates how close the corresponding

source/interference/sensor is to the plane in question. Addi-

tive (spatially and temporally) white Gaussian noise is added

to each sensor. The power of the (isotropic) noise relative to

the power of the neural sources is -5 dB. The power of the

neural interference relative to the power of the neural sources

(SIR) is varied from -10 dB to 10 dB in 5 dB increments.

Determination of the lead field matrices requires knowl-

edge of the spatial locations of the sensors. For this we use the

true spatial locations of the sensors corresponding to an in-

house 275-channel whole head MEG system (Omega 2000,

VSM MedTech Inc., Port Coquitlam, Canada). For simplic-

ity the spatial locations of the neural sources and the neural

interferences all lie within the x = 0 transversal plane.
We use a scalar minimum variance beamformer [3], which
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Fig. 2. Contour plots of the tomographic maps for a

single Monte Carlo trial. A) Raw Data/Beamformer,

B) PFA/Beamformer, C) PCA/Beamformer, and D)

PFA/Column Correlation. The ≥’s and ≥’s correspond
to the true neural source and interference locations, respec-

tively.

requires inversion of the appropriate covariance matrix. The

data covariance matrix is used if denoising is not applied

and the denoised data covariance matrix is used otherwise.

Bayesian regularization is used for inverting ill-conditioned

matrices. Beamforming is used on the raw data as well as

with the data after PCA and PFA denoising are applied. Both

PCA and PFA assume that there are 2 neural sources.

The performance is measured using the localization error,

which is the mean distance between the true neural source lo-

cations and the estimated locations. The estimated locations

correspond to the largest two peaks of the tomographic map.

Since there are 2 neural sources, there are two different ways

of associating the true source locations with the estimated

source locations. We use the more meaningful association,

which is the one that has a smaller mean distance.

Figure 2 shows contour plots for the beamformer recon-

struction when it is used with the raw data and with PCA

and PFA denoised data. Also shown is the proposed method

for source localization (combined with PFA). Notice that, for

this example, the Raw Data/Beamformer finds all 5 neural

sources/interference, the PCA/Beamformer map is indistinct,

and the PFA/Column Correlation and PFA/Beamformer maps

find the two neural sources.

Figure 3 shows the mean localization error as a func-

tion of the input SIR. PCA/Beamformer consistently performs

the worst, PFA/Column Correlation consistently outperforms

the PFA/Beamformer and PCA/Beamformer, and the Raw

Data/Beamformer performs poorly for low SIR and performs

the best (as expected) for high SIR.
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Fig. 3. Mean localization error over all 50 Monte Carlo
trials as a function of input SIR. Results are shown

for Raw Data/Beamformer (+), PFA/Beamformer (O),
PCA/Beamformer (�), and PFA/Column Correlation (�).
Bayesian regularization is used whenever required.

5. DISCUSSION

The proposed method requires the inversion of a Qs-

dimensional matrix (2 in our example) as opposed to the
three beamformer implementations, which require the inver-

sion of anM -dimensional matrix (275 in our example). The
proposed method of column correlation requires a stronger

assumption about the sources (statistical independence)

than the beamformer method (statistical uncorrelatedness).

However, no additional assumptions are required for the

proposed method beyond what is required for applying ICA,

which is increasingly being used for EEG/MEG data.
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