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ABSTRACT

We present a novel experimental paradigm and data analysis 
methodology for studying brain dynamics during sustained-
attention tasks. 256-channel EEG data were recorded while 
subjects participated in hour-long simulated driving sessions. 
Every few seconds, the vehicle drifted away from the center 
of the left lane, and subjects were instructed to steer back to 
the lane center. The error of each drifting event was meas-
ured by the maximum absolute distance from the vehicle’s 
position at deviation onset. EEG data were analyzed using 
independent component analysis and time-frequency analy-
sis [1]. An independent component with equivalent dipole 
sources located bilaterally in lateral occipital cortex exhib-
ited multi-scale brain dynamics. Tonic (~20s) alpha-band 
power increased in high-error compared to low-error epochs, 
while phasic (~1s) alpha power was suppressed briefly after 
deviation onset, then increased strongly just before response 
offset. Other components also exhibited distinct tonic and/or 
phasic activity patterns relating to deviation onsets or re-
sponse onsets. 

Index Terms— EEG, ICA, brain dynamics, tonic, pha-
sic

1. INTRODUCTION 

Sensory event-related potentials (ERP) index mean electro-
encephalographic (EEG) activities following onsets of vis-
ual or auditory stimuli. In many ERP paradigms, partici-
pants respond to stimulus events with single, discrete button 
presses. ERP averages are then obtained by averaging time-
domain EEG epochs precisely time-locked to stimulus or 
response.

In real life, however, many tasks require sustained at-
tention to maintain continuous performance. During the 
course of sustained attention paradigms, participants receive 
continuous visual or auditory stimulus streams along with 
continuous performance feedback. Continuous efforts, in-
stead of discrete button responses, are required to resolve 
situations that last for a few seconds. For instance, one of 
the goals of driving safely on a highway is to stay in the 
center of a cruising lane by continuously controlling the 
steering wheel. Small changes in road curvature or uneven 

pavement may make the vehicle drift off the lane center. 
Sustained lapses of attention during such lane drifts could 
result in catastrophic accidents.

The ERP averaging technique is limited to tasks with 
sudden stimulus event boundaries. Further, both ERP wave-
forms as well as other EEG features may change with onset 
of drowsiness [2]. These limitations make ERP measures 
inappropriate or insufficient for assessing event-related 
brain dynamics during sustained attention tasks accompa-
nied by fluctuating arousal states. 

EEG correlates of fluctuations in human performance 
and alertness on time scales of one second to one minute 
have been demonstrated [3-10]. In this study, we applied 
independent component analysis (ICA) and event-related 
spectral perturbation (ERSP) methods to study brain dynam-
ics following vehicle deviation in sustained attention tasks 
at multiple time scales [1, 3, 7, 11].  

2. MATERIALS AND METHODS 

2.1. Participants and Tasks 

Eleven right-handed adults (5 males) with normal or cor-
rected-to-normal vision were paid to participate in this ex-
periment. Informed consent was obtained from all partici-
pants. All subjects except one participated in two one-hour 
sessions on different days. Subjects arrived after lunch and 
sat on an office chair with armrests in front of a 19-inch 
monitor in an EEG booth in which lighting was dim. A vir-
tual-reality scene was constructed to simulate driving alone 
with cruise control on the left lane on a straight highway at 
night (Fig. 1). During the hour-long continuous driving 
simulation, every 3 to 7 seconds the car was linearly pulled 
towards the curb or into the opposite lane, with equal prob-
ability (Figs. 2, 3). Subjects were instructed to compensate 
for the drift by holding down an arrow key, and to release 
the key when the car returned to the center of the cruising 
lane. Subjects were instructed not to make small corrections 
for precise alignment after they returned to the lane center. 
Subjects were also instructed to put forth their best effort, 
even if they began to feel drowsy. No intervention was 
made when subjects occasionally fell asleep. Without 
prompt response, the car continued to drift until it hit the 
curb or ran into the opposite lane. After such non-
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responsive periods subjects resumed task performance 
themselves, first steering the car back into the left lane. 

Fig. 1. A snapshot of the driving scene. 
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Fig. 2. A bird’s eye view of a drifting event. 

Fig. 3. Driving trajectory of a one-hour session. Dots: de-
viation onsets. Open circles: response onsets. 

2.2. Analysis of Driving Performance  

In a representative hour-long session (Fig. 3), 666 drifting 
events (trials) were recorded. The record of vehicle trajec-
tory indicated that the subject became drowsy and hit the 
curb or drove into the opposite lane several times in this 
session. Similar to real-world driving experience, the vehi-

cle did not always return to the same cruising position after 
each compensatory steering maneuver (Fig. 2). Therefore, 
during each drift/response trial, driving error was measured 
by maximum absolute deviation from the previous cruising 
position rather than by the absolute distance from lane cen-
ter. Behavioral responses and corresponding EEG epochs 
were then sorted by this error measure (Fig. 4), which was 
linearly correlated with reaction time, the interval between 
deviation onset and response onset (Fig. 2). Shorter reaction 
times or lower errors generally indicated that the subject 
was more alert, and vice versa. 

Fig. 4. Trials sorted by absolute deviation from the previous 
cruising position from which the drift began. 

2.3. EEG Data Acquisition and Preprocessing 

256-channel EEG/EOG/EKG signals were recorded at 256 
Hz using a BioSemi system. The subject’s behavior and 
driving trajectory were also recorded at 256 Hz, in sync 
with the EEG acquisition system. Data were digitally fil-
tered with a linear FIR band pass filter (1-45 Hz) before 
further analysis. Due to poor skin contacts and bad elec-
trodes, several channels showed large fluctuations during 
the entire experiment. These channels were rejected from 
further data analysis. 

Continuous EEG data were segmented into 6-s epochs, 
1 s preceding and 5 s following the deviation onsets. The 
driving task required frequent motor responses, sometimes 
accompanied by head or neck muscle twitch artifacts in the 
EEG data. In addition, subjects typically felt drowsy and 
yawned a few times during the sessions. These events 
caused severe artifacts across all the channels in some ep-
ochs. Epochs contain extreme values (fixed thresholds), 
abnormal trends (linear drifts), and abnormally distributed 
data (high kurtosis) were rejected using EEGLAB toolbox 
(available at sccn.ucsd.edu/eeglab) [1]. Epochs contami-
nated with other sources of artifacts (blinks, eye movements, 
heat beats, and head-muscle noise) were not rejected. How-
ever, these artifact sources could be separated from other 
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EEG processes using ICA as described below [12]. In total, 
the representative training dataset contained 562 6-s epochs 
of clean 240-channel EEG data. 

2.4. Independent Component Analysis (ICA) 

Maximally independent EEG processes and their dipole 
source locations were obtained using the extended-infomax 
option of the runica algorithm in the EEGLAB toolbox [1, 
13, 14, 15]. ICA finds an ‘unmixing’ matrix, W, which de-
composes or linearly unmixes the multichannel EEG data, x,
into a sum of maximally temporally independent and spa-
tially fixed components u, where u = Wx. The rows of the 
output data matrix, u, are time courses of activations of the 
independent components. The ICA unmixing matrix was 
trained separately for each session and subject. Initial learn-
ing rate was 10-4; training was stopped when learning rate 
fell below 10-7. To speedup the training processes, the 240-
channel dataset was reduced to 100 dimensions using prin-
cipal component analysis (PCA) before the training. 100 
independent components were obtained. Some were identi-
fied as accounting for blinks, other eye movements, or mus-
cle artifacts. Several non-artifact components showed event-
related dynamics in various frequency bands that were time-
locked to different phases of the drift events. Below, we 
demonstrate time-frequency analysis of multi-scale brain 
dynamics for a visual component with equivalent dipole 
sources located bilaterally in lateral occipital cortex (Fig. 5). 

2.5. Event-Related Spectral Perturbations (ERSPs) 

Fig. 5 shows averaged component power spectra when the 
subject made various levels of errors. 562 6-s epochs were 
first sorted by the absolute deviation from the previous 
cruising position (Fig. 4), and then divided into five evenly 
spaced groups between low-error (0%) and high-error 
(100%) epochs (Fig. 5). Time series in each epoch k were 
transformed into time-frequency matrix Fk(f,t) using a 1-s 
moving-window fast Fourier transforms (FFTs). Log power 
spectra were estimated at 100 linear-spaced frequencies 
from 0.5 Hz to 50 Hz, and then were normalized by sub-
tracting the log mean power spectrum in the baseline (pre-
deviation) periods for each group of epochs (Fig. 5). Event-
related spectral perturbation (ERSP) images (Fig. 6), were 
obtained by averaging n time-frequency matrices from the 
same group using: 

n

k
k tfF

n
tfERSP

1

2),(1),(                                   (1) 

ERSP images were constructed to show potentially signifi-
cant spectral perturbations (log power differences) from the 
mean power spectral baseline (p<0.01, not corrected for 
multiple comparisons). Significance of deviations from 
power spectral baseline was assessed using a surrogate data 

permutation method [1]. In the resulting ERSP images, non-
significant time/frequency points were colored green. 

Fig. 5. Average power spectral baselines of five groups of 
epochs. Inset: scalp topographic map of the visual compo-
nent. 

3. RESULTS

3.1. Tonic Brain Dynamics at a Large Time Scale 

The average power spectral baselines showed increased 
tonic changes, predominately in the alpha band, from low-
error to high-error epochs (Fig. 5). Tonic brain activities in 
the occipital cortex have been shown to reflect fluctuations 
in drowsiness level on a time scale on the order of 20 s per 
cycle [5, 7, 9]. During high-error epochs (80-100%), the 
visual component showed broadband power increases in 
theta, alpha and beta bands, and the peak frequency of alpha 
band shifted slightly downwards (Fig. 5).  

3.2. Phasic Brain Dynamics at a Small Time Scale 

EEG dynamics on a smaller time scale (on the order of 1 s) 
were also observed (Fig. 6). Alpha power was suppressed 
briefly after deviation onset, then increased strongly (~10 
dB) just before the subject released the key. This transient 
(1.5-3 s) alpha rebound activity was consistently observed 
during all single events, regardless of alertness level. The 
latency of alpha rebound was linearly correlated with reac-
tion time (first response onset) in the first four trial groups 
(0-80%). During high-error trials (80-100%), a prolonged 
suppression in alpha power was observed before response 
onset, followed by an alpha rebound that lasted for a few 
seconds (not shown). 

3.3. Deviation-sorted Alpha Power Image 
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Fig. 7 shows a deviation-sorted alpha power image gener-
ated by the erpimage( ) function of the EEGLAB toolbox. 
This image also shows tonic increase in alpha power in the 
pre-deviation period from low-error to high-error epochs (cf. 
Fig. 5). Alpha power was suppressed near response onset 
and increased again just before response offset. 

Fig. 6. ERSP images of five groups of epochs. 

Fig. 7. Deviation-sorted alpha power image. Black line: 
deviation onset; red curve: response onset; green curve: 
response offset. 

4. CONCLUSIONS 

Novel experimental design and data analysis procedures 
were demonstrated for studying multi-scale brain dynamics 
in near-realistic sustained attention tasks. Our results show 
that ICA and time-frequency analysis can detect and model 
multi-scale (tonic and phasic) event-related EEG brain dy-
namics in a behavioral task required sustained attention and 
responses.
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