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ABSTRACT

The functional integration between the different parts of the
brain is usually quanti ed through a measure of coherence.
Most of the existing measures de ne coherence based on the
spectral energy distribution of the signals rather than the phase,
and therefore cannot be reliably used as measures of neural
synchrony. Moreover, the most common methods for quanti-
fying coherence are formulated in the frequency domain and
thus, do not take into account the time-varying nature of brain
activity. Recently, coherence measures have been extended to
account for the energy and the phase relationships between
the given signals and the time-varying nature of the signals
using the wavelet transform. In this paper, we extend this idea
by introducing a new time-varying phase coherence measure
based on Cohen’s class of time-frequency distributions. This
new measure is applied to both synthesized signals and elec-
troencephalogram (EEG) data to show the effectiveness of the
proposed measure in estimating phase changes and in quanti-
fying the neural synchrony in the brain.

Index Terms— Time-frequency analysis, Electroencepha-
lography, Phase synchronization

1. INTRODUCTION

Cognitive acts require the integration of numerous functional
areas widely distributed over the brain and in constant in-
teraction with each other. This dynamic interaction is of-
ten characterized by the phase relationships between the ac-
tivities of two neuronal populations, termed as phase syn-
chronization. The most common measures used to quantify
phase synchrony is time domain cross-correlation and spec-
tral coherence. These measures have limitations for two rea-
sons. First, they assume stationarity of the underlying signals
whereas most real life signals, including EEGs, are not. Sec-
ond, coherence is a measure of spectral covariance and does
not separate the effects of amplitude and phase from each
other. Therefore, there is a need for time-frequency based
coherence measures [1] that separate the phase component of
coherence from the amplitude component.

In order to address these limitations, two different ap-
proaches for quantifying phase synchrony have been proposed.
The rst approach employs the Hilbert transform of the signal
to get an analytic form of the signal and estimates instanta-
neous phase directly from its analytic form [2]. In order to
be able to estimate the instantaneous phase of a signal from
its analytic form one has to make sure that it is a narrow-
band signal. Since most real life EEG signals are not narrow-
band, this is not a very realistic assumption. For this rea-
son, the Hilbert transform based phase synchrony measure
rst bandpass lters the signal around a frequency of inter-
est and then uses Hilbert transform to get the instantaneous
phase. This is an indirect way of obtaining the frequency
dependent phase estimates and is not exact. The second ap-
proach, on the other hand, computes a time-varying complex
energy spectrum using either the continuous wavelet trans-
form (CWT) with a complex Morlet wavelet [3] or the short-
time Fourier transform (STFT) [4]. It has been observed that
the two approaches are similar in their results with the time-
varying spectrum based methods giving sharper phase syn-
chrony estimates over time and frequency, especially at the
low frequency range [2]. Although the wavelet and STFT
based phase coherence estimates address the issue of non-
stationarity, they suffer from limited time-frequency resolu-
tion due to the limited number of available scales in the case
of wavelets and the tradeoff between the window length and
resolution in the case of STFT. Moreover, these estimates are
biased since the phase coherence is estimated from a win-
dowed signal and not the signal itself. For these reasons, there
is a need for high time-frequency resolution phase distribu-
tions for quantifying phase coherence.

In this paper, we introduce a new measure of time-varying
phase estimation and phase coherence based on Cohen’s class
of distributions. Section 2 gives the background on Rihaczek
distribution, a complex energy distribution belonging to Co-
hen’s class, and de nes measures of time-varying phase spec-
trum and phase coherence. Section 3 presents the results for
both synthesized signals and EEG data collected during two
different experiments. Finally, Section 4 gives the conclu-
sions and suggests future work.
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2. RIHACZEK DISTRIBUTION

Cohen’s class of distributions are bilinear time-frequency dis-
tributions (TFDs) that are expressed as 1 [5]:

C(t, f) =

∫ ∫ ∫
φ(θ, τ)s(u +

τ

2
)s∗(u −

τ

2
)ej(θu−θt−2πτf)du dθ dτ

(1)

where the function φ(θ, τ) is the kernel function and s is the
signal. The kernel completely determines the properties of its
corresponding TFD. Most of the members of Cohen’s class
are real valued energy distributions such as the spectrogram
and the Wigner distribution. These distributions are success-
ful at describing the energy of the signal over time and fre-
quency, simultaneously. However, they do not carry any in-
formation about the phase of the signal. For this reason, they
cannot be directly used for describing the phase information
in an individual signal and estimating the phase coherence be-
tween two signals.
Rihaczek introduced the complex energy distribution and

gave a plausibility argument based on physical grounds [6].
For a signal, x(t), Rihaczek distribution is expressed as

C(t, ω) = x(t)X∗(ω)e−jωt (2)

and measures the complex energy of a signal around time t

and frequency ω. The complex energy density function pro-
vides a fuller appreciation of the properties of phase-modulated
signals that is not available with other time-frequency dis-
tributions. Rihaczek distribution is a bilinear, time and fre-
quency shift covariant, complex-valued time-frequency dis-
tribution belonging to Cohen’s class. This distribution satis-
es the marginals and preserves energy. Rihaczek distribu-
tion provides both a time-varying energy spectrum as well as
a phase spectrum, and thus is useful for estimating the phase
coherence between any two signals.

2.1. Reduced Interference Rihaczek Distribution (RID-
Rihaczek)

One of the disadvantages of Rihaczek distribution is the ex-
istence of cross-terms for multicomponent signals. For any
signal, x(t) = x1(t) + x2(t), the Rihaczek distribution is:

C(t, ω) = x1(t)X
∗

1 (ω)e−jωt + x2(t)X
∗

2 (ω)e−jωt

+ x1(t)X
∗

2 (ω)e−jωt + x2(t)X
∗

1 (ω)e−jωt (3)

where the last two terms in the above expression are the cross-
terms. Unlike the cross-terms in Wigner distribution, these
cross-terms are located at the same time locations and occupy
the same frequency bands as the original signals.
In order to get rid of these cross-terms, we propose to ap-

ply a kernel function such as the Choi-Williams (CW) kernel
1All integrals are from−∞ to∞ unless otherwise stated.

with φ(θ, τ) = exp(− (θτ)2

σ ) to lter the cross-terms in the
ambiguity domain. Using the ambiguity domain de nition
of Cohen’s class of time-frequency distributions, C(t, ω) =∫ ∫

φ(θ, τ)A(θ, τ)e−j(θt+τω)dτdθ, we de ne the reduced in-
terference Rihaczek distribution as:

C(t, ω) =

∫ ∫
exp

(
−

(θτ)2

σ

)
︸ ︷︷ ︸

CW kernel

exp(jθτ)︸ ︷︷ ︸
Rihaczek kernel

A(θ, τ)e−j(θt+τω)dτdθ

(4)
where A(θ, τ) is the ambiguity function of the signal and
the kernel function is the product of the Choi-Williams kernel
and the Rihaczek kernel. This new distribution still satis es
the time and the frequency marginals and preserves the en-
ergy since φ(0, τ) = φ(θ, 0) = 1 [5]. The value of σ can
be adjusted to achieve a desired trade-off between resolution
and the amount of cross-terms retained. Fig. 1 illustrates the
original and the reduced interference Rihaczek distributions
for the sum of two Gabor logons.
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Fig. 1. a) Magnitude of Rihaczek distribution and b) Magni-
tude of Reduced interference Rihaczek Distribution

2.2. Time-Varying Phase Spectrum

The time-varying phase estimate based on the Rihaczek dis-
tribution can be de ned as

Φ(t, ω) = arg

[
C(t, ω)

|C(t, ω)|

]
,

= arg
[
ejφ(t)e−jθ(ω)e−jωt

]
,

= φ(t) − θ(ω) − ωt (5)

where φ(t) and Φ(ω) refer to the phase in the time and the
frequency domains, respectively.
Once the time-varying phase spectrum is de ned, the phase
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between two signals, x1(t) and x2(t) can be computed as:

Φ12(t, ω) = arg

[
C1(t, ω)

|C1(t, ω)|

C∗

2 (t, ω)

|C2(t, ω)|

]
,

= (φ1(t) − φ2(t)) − (θ1(ω) − θ2(ω)), (6)

where φ1(t) and φ2(t) correspond to the phase of the time
domain signals, whereas θ1(ω) and θ2(ω) correspond to the
phase of the Fourier transform of the two signals.
It can be shown that for a real-valued signal, the phase

between a signal x1(t) and its shifted version x1(t − t0) is
given by

Φ12(t, ω) = arg

[
x1(t)X∗

1 (ω)e−jωt

|x1(t)||X1(ω)|

x∗

1(t − t0)X1(ω)e−jωt0ejωt

|x1(t − t0)||X1(ω)|

]

= arg

[
x1(t)

|x1(t)|

x∗

1(t − t0)e−jωt0

|x1(t − t0)|

]

= −ωt0 (7)

which is a linear function of frequency as expected 2.

2.3. Phase Coherence

In most applications, the time-varying phase spectrum is not
particularly useful for measuring the synchrony between the
signals. In order to further quantify the synchrony between
signals, we de ne a measure of phase coherence based on the
time-varying phase spectrum estimate introduced in the pre-
vious section. Similar to the de nition given in [3], we de ne
a phase coherence measure based on Rihaczek distribution:

PC(t, ω) =

∣∣∣∣∣1δ
∫ t+δ/2

t−δ/2

exp(jΦ12(τ, ω))dτ

∣∣∣∣∣ (8)

where δ is the length of the time window used for smooth-
ing the phase difference estimates. In previous work based
on the wavelet transform, δ is chosen as a function of fre-
quency since the time-bandwidth product is not a constant for
the wavelet transform. However, in the proposed approach,
the phase coherence is based on the time-frequency distribu-
tion which has a constant time-bandwidth product over the
whole time-frequency plane. Therefore, δ will be a constant
determined based on the signal to achieve a reasonable trade-
off between resolution and accuracy of the phase coherence
estimates.
Phase coherence is always between 0 and 1, and can be

used to detect neural synchrony between different parts of the
brain. When the phase difference between the two signals is
constant over time, the value of phase coherence is equal to 1.

3. RESULTS

In this section, we will rst test the validity of the proposed
measure on a synthesized signal and then apply it to EEG sig-
nals collected during different experiments.

2Φ12(t, ω) = −ωt0 with modulus of π.

Example 1: Time-Varying Phase Tracking: In this example,
we consider two complex exponential signals with a time-
varying phase difference, x1(t) = exp(jω1t) and x2(t) =
exp(jω1(t − at2)), where the phase difference is a second
order polynomial as a function of time. Classical measures
of phase coherence based on the Fourier transform will not
be able to detect this time-varying change in the phase. In
this example, the Rihaczek distribution of the two complex
exponentials are computed and the phase difference between
them is computed using equation 6. We compare the theoret-
ical phase difference which is a second order polynomial and
the estimated one at the frequency of interest, ω1. Fig. 2 il-
lustrates the two signals and shows that the proposed method
is successful at estimating the time-varying phase difference
with high accuracy.
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Fig. 2. Comparison of the theoretical and estimated time-
varying phase difference

Example 2: Gamma Band Synchrony in Schizophrenic Pa-
tients: Cognitive acts require the integration of numerous func-
tional areas widely distributed over the brain. In recent years,
there has been evidence that such large-scale integration is
mediated by neuronal groups that oscillate in the gamma range
(30-80 Hz). In earlier studies, it has been found that schi-
zophrenic patients exhibit de cits in gamma band neural syn-
chrony compared to normal subjects [7].
In this study, we examined the high-frequency (gamma)

electrophysiological abnormalities by studying one schizophrenic
and one non-psychiatric control subjects performing a con-
tinuous performance task (CPT). Measures of gamma energy
indicate that schizophrenia patients exhibit reduced responses
to target stimuli relative to non-psychiatric control subjects.
The current study extends this analysis by utilizing the pro-
posed phase coherence measure to evaluate whether gamma
activity for controls represented synchrony between frontal
and parietal areas during target perception, and then whether
this synchrony is attenuated for schizophrenia patients. The
phase coherence was computed over a window of maximal
gamma energy for target stimuli, 200-600 ms after the stimu-
lus, and 30-55 Hz over all trials. The average phase synchrony
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for the time and frequency region was computed over all tri-
als.
The average phase coherence over 100 trials is 0.8206 for

the control subject, whereas the average coherence is 0.6640
for the schizophrenic subject. The difference between the
phase coherence values over trials was found to be signi -
cant by the t-test at α = 0.001 signi cance level. Fig. 3
shows the phase coherence over time and frequency in the
P300 time range and γ frequency range. It can be seen that
for control subjects the coherence is higher especially at the
upper gamma frequencies.
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Fig. 3. a) Phase coherence over time and frequency for the
control subject, b) Phase coherence over time and frequency
for the schizophrenic subject

4. CONCLUSIONS

In this paper, we have introduced a new time-varying mea-
sure of phase coherence for quantifying the large-scale neu-
ral synchrony in the brain. The proposed measure is based
on a complex-valued time-frequency distribution introduced
by Rihaczek. The time-varying phase and phase coherence
measures are de ned based on this complex distribution. The
effectiveness of the proposed measure in quantifying time-
varying phase synchrony is veri ed both through simulated
and real EEG data. Results based on the analysis of EEG
signals recorded from schizophrenic patients during a sus-
tained attention task revealed the signi cant differences in the
amount of integration in the brain for the schizophrenic and
control subjects. The proposed method differs from the ex-
isting wavelet-based phase coherence measures in a couple
of aspects. First, the time and frequency resolution in the

proposed method is constant over the whole time-frequency
plane as opposed to the wavelet coherence measure. Prelimi-
nary analysis shows that this property of the Rihaczek-based
coherence measures results in a higher resolution estimate of
the phase coherence. Second, there is no bias due to window-
ing unlike the wavelet coherence measure. Future work will
focus on the statistical analysis of the proposed measure as
well as the application to other EEG studies.
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