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ABSTRACT
Anovelmeasure to quantify the synchrony between two sparse
binary strings is proposed, referred to as “stochastic event
synchrony” (SES). It is computed by performing inference
in a probabilistic model. SES can amongst other be used to
detect synchrony in neural signals, in particular, spike trains
(obtained from electrophysiological recordings) and EEG sig-
nals. It is demonstrated how SES can quantify the ring reli-
ability of a neuron. It is also shown how SES can be used as
a feature to detect Alzheimer’s disease based on EEG signals.

Index Terms— Synchronization, Inference, Electrophys-
iology, Electroencephalography, Feature Extraction

1. INTRODUCTION

A sparse binary string is a sequence of bits in which the vast
majority of elements are zero (see e.g., Fig. 1, top). Sparse bi-
nary sequences occur in many contexts, for example, in digital
communications, applied information theory, digital circuit
theory, image processing, and neuroscience. A sparse binary
string can compactly be represented by an event string, which
is the list of time instances at which the ones (“events”) oc-
cur; for example, the event string corresponding to the sparse
binary string at the top of Fig. 1 is given by (2, 8, 10, 27, 29).
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Fig. 1. A sparse binary sequence and its event string.

In this paper, we propose a novel measure to quantify the
synchrony between two event strings, referred to as stochastic
event synchrony (SES). We apply this synchrony measure in
the context of neuroscience. Synchrony is an important topic
in neuroscience. For instance, it is hotly debated whether the
synchronous ring of neurons plays a role in cognition [1]
and even in consciousness [2]. The synchronous ring par-
adigm has also attracted substantial attention in both the ex-
perimental (e.g., [3]) and the theoretical neuroscience litera-
ture (e.g., [4]). By means of SES, one can detect patterns of
synchrony in recorded spike trains. Therefore, SES may be
of interest to neuroscientists who wish to validate theoretical
neural models that involve synchronous neural ring. As we
will demonstrate, the proposed synchronization measure may
also be used to quantify how reliably a single neuron res
when activated by a certain stimulus (“ ring reliability”) [7].

SES can also be applied in an entirely different context,
i.e., for the detection of synchrony in multi-electrode EEG
signals. This may surprise the reader, since EEG signals are
continuous-valued signals, and therefore, they seem to have
little in common with event strings. We will show, however,
how event strings can be extracted from EEG signals. In the
long term, the proposedmethodmay be helpful to detect men-
tal disorders such as Alzheimer’s disease, since mental dis-
orders are often associated with abnormal blood and neural
activity ows, and changes in the synchrony of the activity
of different brain regions (see, e.g., [5]). In this paper, we
will present promising preliminary results on the detection of
Alzheimer’s disease from EEG signals based on SES.
This paper is organized as follows. In the next section,

we introduce stochastic event synchrony (SES). In Section 3,
we brie y outline two algorithms to compute the SES para-
meters for a given pair of sparse binary strings. In Section 4,
we quantify the ring reliability of a single neuron by means
of SES. In Section 5, we compute the SES parameters for
multi-electrode EEG signals; we demonstrate how those pa-
rameters can be used as features to distinguish Alzheimer’s
disease patients from control patients. We offer some con-
cluding remarks in Section 6.

2. STOCHASTIC EVENT SYNCHRONY (SES)

Let us consider the two event strings X and X ′ in Fig. 2 (ig-
nore the strings Y and Z for now). We wish to quantify to
which extent X and X ′ are synchronized. Intuitively speak-
ing, two event strings can be considered as synchronous if
they are identical apart from: (i) a time shift δT ; (ii) small de-
viations in the event occurrence times (“event timing jitter”);
(iii) a few event insertions and deletions.
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Fig. 2. Stochastic Event Synchrony.
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More precisely, for two event strings to be synchronous,
the event timing jitter should be signi cantly smaller than the
average inter-event time, and the number of deletions and in-
sertions should comprise only a small fraction of the total
number of events. This intuitive concept of synchrony is il-
lustrated in Fig. 2. The event stringX ′ is obtained from event
stringX by successively shifting X over δT (resulting in Y ),
slightly perturbing the event occurrence times (resulting in
Z), and eventually, by adding (plus sign) and deleting (minus
sign) events, resulting inX ′. Adding and deleting spikes in Z
leads to “spurious” events in X and X ′ (see Fig. 2): a spuri-
ous event inX is an event that cannot be paired with an event
inX ′ and vice versa.
The above intuitive reasoning leads to our novel measure

for synchrony between two event strings, i.e., stochastic event
synchrony (SES); it is de ned as the triplet (δT ,σT ,ρspur), where
σT is the standard deviation of the (event) timing jitter, and
ρspur is the percentage of spurious spikes

ρspur
�

=
Nspur + N ′

spur

N + N ′
, (1)

with N and N ′ the total number of events in X and X ′ re-
spectively, and Nspur and N ′

spur the total number of spurious
events inX andX ′ respectively. SES is related to the metrics
(“distances”) proposed in [6]; those metrics are single num-
bers that quantify the synchrony between event strings. In
contrast, we characterize synchrony by means of three para-
meters, which allows us to distinguish different types of syn-
chrony (see, e.g., [7]). We compute those three parameters
by performing inference in a probabilistic model. In the next
section, we brie y describe that model, and we brie y outline
two different inference algorithms.

3. COMPUTING THE SES PARAMETERS

We translate the above procedure to generate X and X ′ (cf.
Fig. 2) into a stochastic model. We associate to each eventXk

(k = 1, . . . , N ) a binary variable Bk that equals one if Xk is
spurious and equals zero otherwise; likewise, we associate a
binary variable B′k to X ′

k (k = 1, . . . , N ′). We specify the
following prior distribution for the “spuriosity” string B

�

=
B1, . . . , BN (and likewise B′):

p(b)
�

=

N∏
k=1

p(bk), (2)

where p(Bk = 1)
�

= pspur for all k, and pspur ∈ (0, 1).
The number of non-spurious events in each of the strings X
and X ′ is denoted by M ; Tk and T ′k stand for the k-th non-
spurious event inX andX ′ respectively, where k = 1, . . . , M .
The non-spurious events Tk are modeled as i.i.d. random vari-
ables, distributed according to some distribution fT (tk). In
the following, we assume that fT (tk)

�

= αT , where αT is a
positive real number. The event T ′k is related to Tk as

T ′k = Tk + Nk, (k = 1, . . . , M) (3)

where Nk is an i.i.d. sequence of Gaussian random variables
with mean δT and variance σ2

T . We denote by Sk and S′k

the k-th spurious event in X and X ′ respectively. Similarly
as Tk, the spurious events Sk and S′k are modeled as i.i.d.
random variables, distributed according to some distribution
fS(sk) and fS′(s′k) respectively. In the following, we assume
that fS(sk) = fS′(s′k)

�

= αS , where αS is a positive real
number. Note that X is fully determined by B, S and T ,
and likewise, X ′ is entirely determined by B′, S′ and T ′. In
summary, after some straightforward algebra, we obtain the
following probabilistic model:

p(x, x′, t,t′, s, s′, b, b′; δT , σT )
�∝ βN+N ′

−2Mδ
(
x− g(s, t, b)

)

· δ(x′ − g(s′, t′, b′)
)
δ
[
N −M −

N∑
k=1

bk

]

· δ
[
N ′ −M −

N ′∑
k=1

b′k

] M∏
k=1

Nδt,σ2

t
(t′k − tk), (4)

whereNμ,σ2 is a Gaussian distribution with mean μ and vari-
ance σ2,

β
�

=
αS pspur√

αT (1− pspur)
(5)

and g maps the strings B, S and T to an event string X , and
likewise, it maps B′, S′ and T ′ to an event string X ′. Note
that αT , αS , and pspur do not need to be speci ed individually,
since they appear in (4) only through β. The latter serves as a
knob that controls the number of spurious events.
Given event strings X and X ′, we wish to determine the

parameters δT and σ2
T , and the hidden variables B and B′

(from which ρspur can directly be computed, cf. (1)). There
are various ways to solve this inference problem. Note rst
of all that if B and B′ (and hence T and T ′) are given, it is
trivial to determine the maximum likelihood (ML) estimates
of δT and σT . On the other hand, if δT and σT are given,
the maximum a posteriori (MAP) estimate BMAP and B′MAP

of the sequences B and B′ respectively can be determined
by applying the Viterbi algorithm on an appropriate trellis,
or equivalently, by applying the max-product algorithm on a
suitable factor graph [8]. Therefore, perhaps the simplest and
most natural strategy to jointly estimate B, B′, δT and σT ,
is to apply cyclic maximization (a.k.a “iterative conditional
modes”) [9]: one starts with an initial estimate δ̂T and σ̂T of
δT and σT , then, one iterates the following two steps:

1. with the current estimates δ̂T and σ̂T , determineB and
B′ by the Viterbi/max-product algorithm,

2. with the current estimates B̂ and B̂′, update the esti-
mates δ̂T and σ̂T .

As an alternative, we have also derived an inference algorithm
based on expectation maximization (EM) [10].

4. APPLICATION TO SPIKE DATA

We consider here in vitro intracellular electrophysiological
recordings from a rat neocortical pyramidal cell [11]. The cell
was stimulated with excitatory and inhibitory conductances
so as to simulate synaptic inputs during neocortical sustained
activity. Fig. 3(a) shows 50 trials where each time the cell
was activated by the same stimulus. In order to quantify the
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Fig. 3. SES for in vitro intracellular recordings.

ring reliability of the cell [7], we computed the SES para-
meters ρspur (see Fig. 3(b)) and σT (see Fig. 3(c)) for each
pair of trials; the offset δT is about zero, it is not relevant
for the application at hand. On the average, ρspur = 6.0%
and σT = 21ms. The average interspike time equals 97ms,
which is signi cantly larger than σT ; the ring variability of
the cell can thus be considered small [7]. Fig. 3(d) show the
parameters (ρspur, σT ) for each pair of trials; it can be seen
from that gure that the two parameters are essentially un-
correlated. The results of Fig. 3 are only a starting point for
further investigations. In the future, we plan to study for in-
stance how the stimulus affects the SES parameters.

5. APPLICATION TO EEG SIGNALS

SES can be used to detect synchrony in EEG signals. Obvi-
ously, the method cannot directly be applied to EEG signals1:
the EEG signal needs to be transformed rst into an event
string, as we will describe in Section 5.2. We determine the
SES parameters for EEG recordings from Alzheimer’s dis-
ease (AD) patients and age-matched control patients; we use
the SES parameters as features to classify those two types of
patients. In Section 5.1, we provide information about the
EEG signals we analyzed; in Section 5.3, we provide some
preliminary results.

5.1. EEG recordings

The EEG of 23 Alzheimer disease (AD) patients and 38 age-
matched control patients (CTR) was recorded while in rest
with closed eyes. The electrodes were located on 21 sites
according to the 10-20 international system [12]. For com-
puting the SES, we used from each recording a continuous
artifact-free interval of 20s. We investigate the theta band

1We remind the reader of the important physiological difference between
EEG signals and the intracellular recordings discussed in Section 4: EEG
signals stem from thousands of activated neurons [12], whereas intracellular
recordings measure the activation of a single neuron.

(3.5–7.5 Hz), since the anomalies associated with AD are the
most signi cant in that frequency band (see [16] and refer-
ences therein).

5.2. From EEG signals to event strings

To each EEG signal, we successively apply two transforma-
tions: (i) wavelet transform; (ii) sparsi cation of the wavelet
representation (a.k.a. “bump modeling”).

5.2.1. Wavelet Transform

In order to extract the oscillatory patterns in the EEG signal,
we apply a wavelet transform. More speci cally, we use the
complex Morlet wavelets

w(t) = A exp
(− t2/2σ2

t

)
exp(2iπft), (6)

where t is time, f is frequency, σt is a (positive) real para-
meter, and A is a (positive) scalar normalization factor. The
Morlet wavelet (6) has proven to be well suited for the time-
frequency analysis of intracellular signals (see [13]). As a
result, we obtain a time-frequency representation c(f, t) of
the EEG signal. The next transformation (i.e., sparsi cation)
operates on the squared magnitude z(f, t) of the coef cients
c(f, t):

z(f, t)
�

= |c(f, t)|2. (7)

5.2.2. Sparsi cation

We approximate the map z(f, t) as a sum zbump(f, t, θ) of a
“small” number of smooth basis functions (“bumps”):

z(f, t) ≈ zbump(f, t, θ)
�

=

Nb∑
k=1

b(fk, tk, θk), (8)

where each bump b(fk, tk, θk) is centered at time tk and fre-
quency fk (see Fig. 4); the vector θk contains additional bump
parameters, and θ

�

= (θ1, θ2, . . . , θNb
). The sparse bump ap-

proximation zbump(f, t, θ) captures the most signi cant oscil-
latory activities in the EEG signal; we refer to [14] [15] for
more information on bump modeling. For the purpose of this
paper, we transform the bump train zbump(f, t, θ) into a bi-
nary sequence zbin(t), as illustrated in Fig. 4(c). At the bump
centers tk, the sequence zbin(t) takes the value 1, otherwise
it equals 0. Also other bump parameters (such as the center
frequency) can be integrated in the concept of SES; this is the
subject of ongoing work.

5.3. Results and Discussion

Our preliminary results on the classi cation of CTR and AD
patients on the basis of synchrony are summarized in Table 1.
As features, we used the SES parameters in addition to a stan-
dard synchrony measure, i.e., spectral coherence (COH) [12];
the latter serves as a benchmark for assessing the classi ca-
tion performance of the SES parameters. (In the context of
AD detection, spectral coherence has so far intensively been
used for hypothesis testing: in many studies, it is veri ed
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(a) Time-frequency map z(f, t).

(b) Bump train approximation zbump(f, t, θ).

1

(c) Binary sequence approximation zbin(t).

Fig. 4. From wavelet transform to binary sequence.

whether AD is associated with statistically signi cant anom-
alies in the spectral coherence in certain frequency bands and
cortical areas; as far as we know, spectral coherence has not
yet been used to classify CTR and AD patients. As a conse-
quence, it is hard to compare our results to previous studies.)
We investigated ten different sets of features, each containing
four features; with the rst four sets, we test the SES parame-
ters and coherence individually. In each of the last six sets,
we combine two of those four parameters; each of the two
parameters contributes two features. For all ten feature sets,
we used a hyperplane as classi er (“linear discriminant analy-
sis”); we chose this rather simple classi er (instead of a multi-
layer perceptron for instance) in order to avoid over tting. We
selected (by brute force optimization) the four pairs of elec-
trodes that resulted in the highest classi cation performance.
As can be seen from Table 1 ( rst four feature sets), the (indi-
vidual) SES parameters δT and σT resulted in a slightly bet-
ter classi cation performance than coherence (in this partic-
ular experiment); of the two-parameter combinations (feature
sets 5–10), the combinations δT -σT and COH-ρspur yielded
the best results (83.6% correctly classi ed). Moreover, we
veri ed (similarly as in Fig. 3(d)) that the SES parameters are
practically uncorrelated with coherence. The SES parameters
provide thus additional information about synchrony.
Of course, we are fully aware of the fact that this simple

experiment does not give the nal answer. We are currently
designing more involved classi ers that combine SES para-
meters and spectral coherence with many other features. The
results of those more exhaustive experiments will be reported
in the near future.

6. CONCLUSION

We have introduced a novelmeasure to quantify the synchrony
between event strings, i.e., stochastic event synchrony (SES),
and we have explored two applications. We believe that SES
may serve as a valuable tool to study synchrony in neural sig-

Features Correct Features Correct

COH 78.7% COH and δT 80.3%
δT 80.3% COH and σT 82.0%
σT 80.3% COH and ρspur 83.6%
ρspur 78.7% σT and ρspur 80.3%
δT and σT 83.6% δT and ρspur 80.3%

Table 1. Percentage of subjects correctly classi ed.

nals. We are currently exploring its usability in more depth,
and we are developing various extensions (particularly in the
context of bump modeling).
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