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F.B. Vialatte1, J. Solé-Casals2∗, A. Cichocki1

1 RIKEN Brain Science Institute, LABSP, Japan
2 Universitat de Vic, Spain

ABSTRACT

Electroencephalographic (EEG) recordings are, most of

the times, corrupted by spurious artifacts, which should be

rejected or cleaned by the practitioner. As human scalp EEG

screening is error-prone, automatic artifact detection is an is-

sue of capital importance, to ensure objective and reliable re-

sults. In this paper we propose a new approach for discrim-

ination of muscular activity in the human scalp quantitative

EEG (QEEG), based on the time-frequency shape analysis.

The impact of the muscular activity on the EEG can be eval-

uated from this methodology. We present an application of

this scoring as a preprocessing step for EEG signal analysis,

in order to evaluate the amount of muscular activity for two

set of EEG recordings for dementia patients with early stage

of Alzheimer’s disease and control age-matched subjects.

Index Terms— Electroencephalography, Electromyogra-

phy, Wavelet transforms, Biomedical signal processing

1. INTRODUCTION

Artifacts in the EEG can be defined as any difference of po-

tential produced by an extra-cerebral source [1]. In addi-

tion to electrical pulse noise and movement artifacts, ocu-

lar, electromyographic (EMG), electrodermal, electrovascu-

lar and respiratory signals can interfere with the EEG. EMG

artifacts are quite difficult to recognize and discriminate be-

cause they may display similar patterns as usual EEG brain

signals, in the same frequency range [2]. EEG analysis may

be therefore strongly impaired by the presence of such mus-

cular artifacts. The importance of artifact detection, either in

order to reject them or remove them, has been already em-

phasized in the scientific literature. However, manual human

artifact rejection can be biased and not reliable for scientific

investigations. For instance, epoch by epoch agreement in

sleep stage assignment of artifact scoring between 5 experi-

enced sleep technologists from different laboratories reported

poor consistency [3]: mean epoch by epoch agreement be-

tween scorers was rather low, globally 73%, and depended on
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the laboratory the technologist worked in. Therefore, auto-

matic methods are preferable to manual rejection.

The well known approaches for automatic detection of ar-

tifacts are usually based on threshold methods for EEG poten-

tials or power spectrums [4], regression based models [5], or

projection based methods [6]. Recently, Independent compo-

nent analysis (ICA) has been successfully applied to reduce

some selected artifacts by exploiting statistical independency

criterions [8],[7]. Using ICA semi-automatic criterion was

proposed [9] for rejection of some artifacts. However, despite

of promising results, ICA approach still needs manual iden-

tification and sorting components corresponding to specific

artifacts, so to obtain a reliable result, human still need make

intervention to optimally process the data.

Instead of exploiting raw EEG signal in the time or the

frequency domain, we exploit wavelet joint time-frequency

representations (TFR). Such TFR were proven to be useful

for EEG ocular artifacts denoising [10]. Moreover, using

an appropriate normalization, the so-called ’z-score’, wavelet

time-frequency maps precision can be enhanced for artifact

detection [11]. However, up to now, precise time-frequency

properties of muscular artifact shapes has not been fully ex-

plored. We propose here a novel approach, based on the time-

frequency shapes specificity of artifacts, in order to asses au-

tomatically the degree of EMG corruption of EEG signals.

In order to confirm usefulness and validity of our approach

we have designed special experiments: During EEG record-

ings, muscular artifacts were voluntarily provoked (intentional)

and controlled. Our purpose is discriminate and to score these

artifacts, while exploiting only raw EEG signals. The new

approach is developed for a large panel of muscular artifacts,

ranging from eye artifacts to head, jaw or body movements.

The method exploits time-frequency characteristics of EEG

signals to define optimal time length of the epochs of analy-

sis. Our approach is designed for situations where different

groups of signals are to be compared; the method returns a

score for each signal, representing the quantitative level of

EMG activity. We then try to obtain the same quality of sig-

nals in each group (the same amount of artifacts).
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Fig. 1. Distribution of power for various QEEG intentional

(controlled) artifacts after z-score normalization compared to

baseline. The white color zones represents electrode loca-

tions where the activity (bandpass filtered in the range 10-120

Hz) are close to baseline activity and dark blue color denotes

zones in which we observed increasing power.

2. DATA

EEG signals corrupted by EMG, were acquired using a 64

channels EEG Biosemi system (sampling frequency rate 1KHz),

with active electrodes. The subjects were asked (with control)

to produce voluntarily, one by one, muscular artifacts (n = 10
trials for each artifact). Ten different muscular artifacts were

produced: eye blinks (left n = 10 trials, right n = 10, both

n = 10); eye movements (look from left to right n = 10), roll

eyes (clockwise n=10); speaking (speak ’kampai’ n = 10);

swallow some water (n = 10); move head (n = 10); nodding

first down then up (n = 10); grind teeth on chewing-gum

(n = 10) three times; stand up (30% of full standing) and sit

down again (n = 10) (see Fig.1). The database consisted of

100 recordings (10 trials for each 10 artifacts).

In the course of another clinical study, EEG recordings

(Deltamed EEG machine) from elderly patients affected by

Alzheimer’s disease and followed clinically (labeled AD set)

and from age matched controls (labeled Control set) were

recorded, with electrodes located on 19 sites according to the

10-20 international system. Reference electrodes were placed

between Fz and Cz, and between Cz and Pz. Sampling fre-

quency rate was 256 Hz, with bandpass filter 0.17-100 Hz.

When possible, periods of 2.5 seconds were selected in a ’rest

eyes-closed’ condition for each patients. Two data sets, Con-

trol set (n=39), and AD set (n=33) are to be analyzed.

3. METHOD

3.1. WAVELET TIME-FREQUENCY TRANSFORMA-
TION

Wavelets, especially complex Morlet wavelets [12] have al-

ready been widely used for time-frequency analysis of elec-

troencephalographic signals [13], [14], [15]). Complex Mor-

let wavelets w(t) of Gaussian shape in time (deviation σ) are

defined as:

w(t) = A.e
−t2

2σ2 .e2iπft (1)

where σ and f are interdependent parameters, A is a normal-

isation factor equal to (σ
√

π)1/2, with the constraint 2πft >
5; the wavelet family defined by 2πft = 7 was chosen, as de-

scribed in [13]. For each time sample t, and each frequency

bin f , wavelet transform computes one coefficient cft (con-

tinuous transform was approximated with 1 Hz steps in fre-

quency). Wavelet representations can be investigated in re-

gard to a baseline activity. To this end, a usual method is

to normalize the time-frequency representation depending on

the mean μf and standard deviation σf of each frequency bin

f in the baseline activity (the so-called z-score [11]). In or-

der to detect artifact corrupted activity, the baseline activity

should be representative of non noisy signals. However, EEG

signals generally present a low signal-to-noise ratio, the most

reliable method is therefore to repeat the estimation of μf and

σf on several clean signals (> 30 signals - here we used 50

signals with the lowest possible apparent noisy activity), and

finally to compute the following normalized score:

zft =
cft − Mf

St
, ∀t, (2)

where Mf is the average of each b baseline’s mean μf (b) for

frequency f :

Mf = μf (b) (3)

and Sf is the average of each b baseline’s standard deviation

σf (b) for frequency f :

Sf = σf (b) (4)

Each artifact has specific time-frequency shapes, with sharp

activity in the high frequency range (see Fig.2 (a) and Fig 2

(b)). As a comparison, EEG oscillations are less sharp in high

frequencies and have higher amplitudes in low frequencies,

with usually well defined time duration (more than 3 time

periods [15]) (see Fig.2 (c)). The time-frequency joint rep-

resentation allows to extract these characteristics, by defining

time-frequency windows of interest which will be more pre-

cise than the usual time-windows used to define epochs for

the artifact scoring.

3.2. WINDOWED Z-SCORE

We define two bands of interest in the frequency range: α+β
[10-35] Hz and γ [60-90] Hz frequency ranges (F1=26 fre-

quency bins and F2=31). For these two bands of interest,
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Fig. 2. Sample of wavelets time-frequency profiles for arti-

facts: (a) controlled eyes rolling clockwise, (b) teeth grinding

three times compared to (c) typical clean EEG oscillatory pat-

terns .

we define shifting time-frequency windows of 4 time periods

around the central frequency (time length T1=180 millisec-

onds for α + β and T2=53 milliseconds for γ). Using these

windows, shifted along the time axis, the scores are com-

puted for 5 electrodes positions E = [Fp1, Fp2, T7, T8, Oz]
; these peripherally distributed electrodes are good references

for EMG activity (see e.g. fig.1: central electrodes, located

above aponeurosis, are less likely to record EMG activity).

In order to assess this general impact, we combine infor-

mation of low and high frequencies and define a deviation

score Ws (which indicates the level of noise within the sig-

nal) :

Ws = max
e

(Ls(e), Hs(e)), (5)

where e represents EEG electrodes in E, Ls and Hs are the

scores for the signal in α + β and γ frequency ranges:

Ls(e) = 〈σα+β(τ)〉τ = 〈
35∑

f=10

τ+T1∑

t=τ

(zft − zft)2

F1T1 − 1
〉τ (6)

and

Hs(e) = 〈σγ(τ)〉τ = 〈
90∑

f=60

τ+T2∑

t=τ

(zft − zft)2

F2T2 − 1
〉τ (7)

Where zft denotes the average zft in the time-frequency

window. The deviation score Ws evaluates for the quanti-

tative proportion of artifacts in the signal, and is based on

standard deviation rather than usual measures of amplitude:

Evoked EEG activity can display high amplitude activity, but

are unlikely to have sharp peaks, therefore standard deviation

is a more specific measure (power measures are too conserva-

tive and tend to detect evoked potentials as artifacts [16]).

3.3. ARTIFACT SCORING

Instead of rejecting all artifacts, we are here interested in eval-

uating a ’signal-to-artifact’ ratio. For instance, eye blinks can

not be rejected for a long time duration in ’eyes opened’ con-

dition, and also will not elicit the same degree of perturbation

within the EEG signals as compared to body movements. In

Table 1. Quantitative evaluation of perturbations of the

EEG signals due to artifacts, using Ws log average scoring

(rounded to obtain the perturbation order). Application to

preprocessing of EEG from Alzheimer and Control patients

(mean and standard deviation of Ws are reported).

Artifact type log10〈Ws〉 Order

Eye blink 0.24 0

Eye move 0.88 1

Speaking 1.29 1

Swallow 2.13 2

Grind 3 times 2.84 3

Nodding 2.95 3

Standup 3.27 3

AD set 0.27±0.39 0

Control 0.15±0.17 0

Clean AD 0.15±0.17 0

other words, we are interested in a quantitative rather than

qualitative approach.

Table 1 reports the average log Ws score for each type of

artifacts (averaged on 10 trials, except for eye blinks grouped

in 30 trials and eye moves grouped in 20 trials). The score

estimate the impact of specific artifact on EEG (strong impact

elicits strong score), and were computed for 2.5 sec time win-

dows during and after the artifact was triggered. Using this

score, one can discard signals depending on the desired quan-

titative amount of artifacts accepted (for instance, for exper-

iments with eyes opened conditions one may accept artifacts

of order up to 1).

We have used this method to evaluate the distribution of

EMG power in the two groups of patients (AD set, Control

Set). The purpose of this application is to produce two databases

with an equivalent amount of EMG noise, so that noise would

not bias the study. The distributions differed, AD set Ws

values are above Control set values (Kolmogorov-Smirnoff

signed test for difference of distributions p = 0.04), which

means that the AD set contains significantly more EMG. Gen-

erally, low score for artifacts are found in each of the sets

(on the order of 0). After removing the 6 most noisy sig-

nals for AD set(in the table: Clean AD), the distributions

becomes similar (equal mean, equal standard deviation, and

Kolmogorov-Smirnov test p � 0.10), which fulfills our pre-

processing objective.

4. CONCLUSION AND DISCUSSION

We presented a novel approach for artifact evaluation and re-

jection, based on the time-frequency properties of sharpness

in high frequencies and in low frequencies. The evaluation

score of the Ws represents the overall impact of muscular ar-

tifact onto EEG signals. Our approach provides consistent

results for intentionally generated and controlled artifacts.
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The deviation scores Ws were computed for 2.5 seconds

epochs, with optimal sliding time-frequency subwindows. A

shorter epoch can also be considered, however as some ar-

tifacts elicit long duration activities in low frequency range

the score can become less reliable for slow muscular artifacts

(typically, eye movements, or body movements). On the other

hand, epochs longer than 2.5 seconds could be less sensitive

to fast transient artifacts (such as eye blinks).

In our experiments we used two frontal, two temporal and

one occipital electrodes. The method could be extended to

other sets of electrodes, and more electrodes could be applied.

However, the computational demand of such an investigation

would become heavy. As the results obtained with this limited

set of electrodes are satisfactory, we think that the number of

electrodes used is sufficient.

This method is well suited for muscular artifact estima-

tion. However, one should take into account that the effect

of other types of artifacts - i.e., electrodermal, electrovascular

and respiratory artifacts - has not yet been evaluated. Fur-

thermore, epileptic activity may also displays sharp waves,

and therefore, could be detected as muscular artifacts by this

method.

The proposed score Ws is potentially useful when several

sets (in our example 2 sets) of signals are to be analyzed and

compared regarding some feature and markers. In such case

it is necessary to assess and compare EMG noise level. This

step of evaluation EMG noise should be always led before

EEG signal comparisons (for instance for medical abnormal

EEG detection). It could also be combined with ICA for EMG

related independent component removal, following wavelet

ICA the method suggested in [17]. In a final step, we may

asses automatically the amount of EMG noise remaining after

ICA cleaning of EEG signals in such a way that (Ws should

decrease to a satisfactory level).
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