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ABSTRACT 
 
A new hybrid genetic algorithm (HGA) for optimization of a self-
paced brain interface (SBI) is proposed. To identify intentional 
control (IC) commands in the noisy background EEG signal, the 
proposed SBI uses features extracted from three neurological 
phenomena-- movement-related potentials as well as changes in the 
power of Mu and Beta rhythms. To identify the IC commands, for 
each neurological phenomenon, a multiple classifier system (MCS) 
is designed. Then a 2nd -stage MCS combines the outputs of the 
individual MCSs and generates the final decision. The HGA 
selects the optimal subset of features, the optimal parameter values 
of the classifiers, as well as the best configuration for combining 
the MCSs. Analysis of the data of four subjects shows an average 
TP= 56.18%,and an average FP=0.14%, a significant improvement 
over our previous SBI design. 
 
Index Terms—Biomedical signal processing, Wavelet 
transforms, Genetic algorithms, Pattern classification, 
Electroencephalography 

 
1. INTRODUCTION 

 
A brain interface (BI)  allows individuals to control devices using 
their brain signals only. Self-paced BIs (SBIs) form a sub-class of 
BI systems that allow such control at any time and at the user’s 
own pace. An SBI detects an intentional control (IC) command in 
the EEG. At other times, the user is in a No Control (NC) state. 

Unfortunately, the performance of EEG-based SBIs is still not 
suitable for most practical applications. Several methods can be 
employed to boost the performance of SBIs. They include the 
employment of more sophisticated signal processing algorithms, 
incorporating the spatial information as well as the use of more 
than one neurological phenomenon. To achieve low false positive 
(FP) rates, we proposed in [1] the simultaneous use of three 
neurological phenomena.  The proposed SBI used features 
extracted from movement-related potentials (MRP), changes in the 
power of Mu rhythms (CPMR) and changes in the power of Beta 
rhythms (CPBR). The main rationale behind using these specific 
neurological phenomena is that they are time locked to the onset of 
movement. The evidence from the literature supports this 
hypothesis [2, 3]. 

In [1], a two-stage multiple-classifier system (MCS) that detects 
an IC command using features extracted from MRP, CPMR and 
CPBR is proposed. For each neurological phenomenon and EEG 
channel, one feature was extracted; thus three features were 

generated per channel.  Each feature was extracted using matched 
filtering with a specific template that corresponded to the specific 
neurological phenomenon, and was classified using a K-nearest 
neighbor classifier. The process was repeated for all EEG channels. 
For each neurological phenomenon, an MCS combined the outputs 
of the individual classifiers. Next, a 2nd -stage MCS was used to 
combine the outputs of the three MCSs designed in the first stage. 
To reduce the dimensionality of the feature space, a genetic 
algorithm (GA) selected a subset of the features. For simplicity, the 
values of the parameters of all classifiers were assumed to be the 
same, and were selected through an exhaustive search.  

Several factors could limit the application of this system. While, 
it achieved a low FP rate (1.25%), this was at the expense of 
having a low TP rate (the average TP rate on the data of four 
subjects was 29.05%). Moreover, because of the computational 
complexity involved, the MCS for each neurological phenomenon 
was designed separately. Since all three MCSs contributed to the 
overall performance, this process is sub-optimal.  

To improve the performance of the SBI proposed in [1], in this 
paper, we introduce more sophisticated feature extraction and 
feature classification methods.  Specifically, a hybrid genetic 
algorithm (HGA) is proposed .The HGA consists of a GA followed 
by a local search (LS). The GA selects the best subset of features 
and the optimal values of classification parameters, and the LS 
determines the best structure for the 2nd -stage MCS.  Analysis of 
the data of four able-bodied subjects shows that the proposed 
method achieves significantly better performance than our previous 
SBI.   
 

2. METHODS 
 

The improved SBI is shown in Figure 1. Its components are 
described below.  
 
2.1. Feature extraction 
 
The discrete wavelet transform (DWT) is a powerful tool for 
extracting time-frequency features of a signal. However, its use is 
limited because of its shift-variancy property. The use of a 
stationary wavelet transform (SWT) resolves the shift-variancy 
problem associated with the DWT by eliminating the 
downsampling operator from the multi-resolution analysis of the 
DWT [4]. However, the use of stationary wavelet coefficients as 
features, results in a dramatic increase in the dimension of the 
feature space. We thus propose a combination of SWT and 
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Figure 1. The overall structure of the proposed SBI (the dashed lines show the parameter values controlled by the HGA). 

matched filtering to deal with the large-dimension feature space as 
described below.   

For MRPs, after applying a 5-level SWT decomposition, the 
wavelet coefficients in the lowest approximation and detail levels 
(in the [0-2] and [2-4] Hz range) were selected. For each level, we 
averaged the coefficients extracted from the IC commands over the 
epochs in the training sets to generate the template of SWT 
features for that scale. The cross-covariance of the wavelet 
coefficients of the p’th  epoch and the template at scale j was 
calculated, and the following feature (which represents the 
maximum of the cross-correlogram over a period of 0.125 seconds) 
was extracted: 

)),(max( ,, nXCORF pjpj =            (1) 

where 
]0625.0,0625.0[ ++−+∈ finishstartfinishstart ttttn  

)(nXCOR denotes the cross-covariance function. tstart  and tfinish 

specify the length of the epochs. We chose a period of 0.125 
seconds because the features of interest lie in the frequencies 
below 4 Hz and were generated by sliding a 0.125-second window 
over the EEG signals (see Section 3 for more details).  
    A second feature that provides information about the time 
instant when the maximum of the cross-correlogram has occurred 
was generated as follows: 

))(( ,,, pjpjpj FnXCORtT ==           (2) 

  where in (2), t is the time operator. This process was repeated for 
all EEG channels, resulting in N×4 features for each neurological 
phenomenon, where N is the number of EEG channels. 

As for the changes in the Mu and Beta rhythms (CPMR and 
CPBR), all epochs were band-pass filtered before feature 
extraction. For CPMR, the band pass was chosen from 8 to 12Hz. 
For CPBR, because of the relatively wide range of the Beta 
rhythms (typically in the range of 14-30Hz) , a user-customized 
band pass was chosen for each subject, as explained below. Both 
filters were linear-phase 32-point FIR filters. The amplitudes of the 
signals were squared to obtain the power values. The SWT was 
then applied, and the wavelet coefficients of the lowest 
approximation and detail levels were calculated. The process of 
feature extraction is then similar to that used above for the MRPs.  

The choice of the proper wavelet function. The proper wavelet 
function is usually chosen based on the similarity between the 

underlying neurological phenomenon and the shape of the wavelet 
function.   Unfortunately, the choice of the wavelet function may 
become subjective. Moreover, it has been shown that the shape of 
the underlying neurological phenomenon may vary from one 
subject to another [5]. We thus propose an automatic method to 
select the wavelet function. For each subject, we define the Fisher 
ratio: 
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where ),,,( srqpICμ  and ),,,( srqpNCμ  are the means and 

),,,(2 srqpICσ  and ),,,(2 srqpNCσ  are the variances of IC and 

NC classes for feature r of channel q extracted using the wavelet 
function s for neurological phenomenon p. N is the number of EEG 
channels , NFeatures is the total number of features, and 
NWaveletFunctions is the total number of wavelet functions. For each 
channel q and for each neurological phenomena p , the wavelet 
function that achieves the following objective is then chosen: 

)4(),...,2,1;3,2,1())],,,,([(, NqpsrqpCMax sr ==    
The wavelet functions were selected from a pool of Daubechies, 

Biorthogonal, Symlet and Coiflet wavelet functions (46 wavelet 
functions in total). Features were normalized prior to the 
calculation of the Fisher ratio. 

The choice of proper CPBR frequency band. In order to select 
more discriminant CPBR features, the Fisher ratio in Eq. 3 was 
calculated for seven CPBR frequency bands: [14-18], [18-22], [22-
26], [26-30], [18-26], [22-30] and [14-30]Hz. The averages of the 
maximum of Fisher ratios (as calculated in Eq.4) over all N EEG 
channels were compared, and the frequency band that resulted in 
the highest average was selected.  
 
2.2. Feature classification 
 
For each pair of neurological phenomenon and EEG channel, the 
features were classified using a support vector machine (SVM) 
classifier. The outputs of the classifiers were then combined using 
a two-stage MCS (see Figure 1).  
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Figure 2. Structure of the chromosome 

2.2.1. Support vector machines (SVMs) 
A total of  N×3  SVM classifiers with Gaussian kernels were 
designed. The performance of each classifier was determined by its 
regularization parameter C and the bandwidth σ of the kernel. 
Since there are N×3 classifiers, N×3  values had to be estimated 

for each (σ  and C) parameter.  
 

2.2.2. Multiple classifier systems (MCSs) 
For each neurological phenomenon, an MCS that classifies the 
outputs of the individual SVM classifiers using a majority voting 
rule is used. Since there are N EEG channels for each neurological 
phenomenon, the outputs of N SVMs are combined. A 2nd-stage 
MCS combines the outputs of the three MCSs into five 
combinations, as described below. The output of this MCS is 
determined by an HGA. It forms the final classification label for 
each epoch as an IC or an NC state. 
 The following configurations were investigated for combining the 
outputs the MCSs in the first stage of the two-stage MCS: (1) 
configuration 1- using the AND operation to combine the binary 
outputs of MRP-based and CPBR-based MCSs; (2) configuration 
2- using AND operation to combine the outputs of MRP-based and 
CPMR-based MCSs; (3) configuration 3- using the AND operation 
to combine the outputs of CPBR-based and CPMR-based MCSs; 
(4) configuration 4- combining the outputs of all MCSs according 
to the majority voting rule; (5) configuration 5- using the AND 
operation to combine the outputs of all MCSs . 
 
2.3. Hybrid genetic algorithm (HGA) 
 
The HGA has the following tasks: feature selection, determining 
the parameter values of the SVM classifiers, and selecting the best 
of the above 5 configurations. 

To represent each possible combination of features and 
parameter values of SVM classifiers, we defined a binary 
chromosome of length ChromosomeL  (see Figure 2). Bit i of the 

first Nfeatures bits of the binary chromosome specified whether or 
not feature i was selected by the HGA. A value of “1” indicated the 
presence of feature i and a value of “0” indicated its absence in a 
chromosome. We used the second part of the chromosome to select 
the parameter values of the N×3  SVM classifiers. For each SVM 
classifier, two parameter values had to be determined: C and σ ; 
for each parameter, 4 bits were used to represent the values 
of that parameter. For each chromosome, a local exhaustive 
search was then carried out to find the best of the 5 configurations 
in the 2nd-stage MCS. Suppose x denotes a model in Figure 2. The 
objective function for the HGA was defined as in Eq.5. 
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where FA (false activations) is the percentage of NC epochs that 
are affected by a false detection. The main difference between the 
FA and FP rate is that multiple FPs in an epoch are counted as one 
FA. The values of T1 and T2 in Eq. 5 were selected as 50% and 
80%, respectively for all subjects except for subject AB3. For 

AB3, the value of T1 seemed to be too high and resulted in the 
generation of chromosomes with high FA values. For this subject, 
the values of T1 and T2 were chosen as 33% and 50%, respectively. 
The “mean” operator is applied over the inner-validation sets (see 
Section 3). 

We implemented a lexicographic approach for sorting the 
chromosomes in the HGA population [6]. In this approach, the 
chromosomes were compared and ranked according to the values 
of )(1 xf in Eq.5. Any ties were resolved by comparing the 

relevant chromosomes again with respect to another objective with 
a lower priority .If there was also a tie in the 2nd objective function, 
a 3rd objective function was used for comparison and so on. We 
defined the rest of the objective functions as follows (in the order 
of priorities): 

))](Var())([mean(:2 xFAxFAMinf x ×          (6) 

]
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))](Var())(([:4 xFPxFPmeanMinf x ×          (8) 

))]([(:5 xNMinf x            (9) 

))]([(:6 xNMinf Featuresx          (10) 

Where in Eq. (9), N is the number of channels and in Eq.(10) 
NFeatures is the number of features. The “mean” operator is applied 
over the results obtained from inner-validation sets (see Section 3). 
The operators of the HGA were tournament-based selection 
(tournament size=3), uniform crossover (p=0.9) and uniform 
mutation (p=0.01). The sizes of the initial population and the 
populations in the next generations were chosen as 200 and 100, 
respectively. The population of HGA was randomized initially. 
Elitism was used to keep the best performing chromosome of each 
population in the subsequent populations, and the number of 
evaluations was set to 5000. If the improvement in the first 
objective of the best solution was found to be less than 1% for 
more than 10 consecutive generations, the HGA was terminated. 

 
3. RESULTS 

 
The data were collected from four right-handed (three males and 
one female) able-bodied subjects between 31 and 56 years old. 
They had all signed consent forms prior to participation in the 
experiment. The subjects performed a right index finger flexion. 
The EEG signals were recorded from 13 monopolar EEG channels 
(according to the International 10-20 System at F1, Fz, F2, FC3, 
FC1, FCz, CF2 , FC4, C3, C1, Cz ,C2, and C4 locations) and were  
sampled at 128 Hz.  The signals were then converted to bipolar 
EEG signals since it has been shown that bipolar electrodes are 
more likely to generate more discriminant features than monopolar 
electrodes [7]. The conversion was carried out by calculating the 
difference between adjacent EEG channels and resulted in the 
generation of 18 bipolar EEG channels (see [1] for details).   
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Table 1. Comparison of the performance. 
 

 AB1 AB2 AB3 AB4 
Results from current study 

Configuration 1 5 5 1 

Average TP  
58.64 
(8.56) 

64.16 
(7.53) 

46.89 
(10.38) 

55.06 
(5.33) 

Average FA  
1.24 

(1.13) 
0.16 

(0.35) 
2.26 

(1.39) 
0.79 

(0.82) 

Average FP  
0.15 

(0.14) 
0.02 

(0.04) 
0.28 

(0.17) 
0.12 

(0.15) 
Results from [1] 

Configuration 4 4 4 4 

Average TP 
26.00 
(9.49) 

26.96 
(3.95) 

31.31 
(13.46) 

31.88 
(8.96) 

Average FP 
0.13 

(0.09) 
0.28 

(0.15) 
3.45 

(3.99) 
1.15 

(0.31) 

Our IC epochs consisted of data collected over an interval 
containing the onset of movement (measured as the finger switch 
activation). The  data obtained from tstart =1.0 second before to 
tfinish =1 second after the movement onset were analyzed. 

We recorded our NC sessions as follows. During an NC session, 
the subject was asked to count the number of times that a white 
ball bounced off the screen. The NC sessions therefore contained 
attentive as well as non-attentive NC data. Each NC session lasted 
approximately two minutes; with up to 2 such sessions were 
recorded each day. We then selected the NC periods as follows. A 
window of width (tstart+tfinish) seconds was slid over each EEG 
signal collected during the NC sessions by a step of 16 samples 
(0.1250 sec). For each 1-second window where artifacts were not 
detected, features were extracted. The IC and NC epochs for which 
the electrooculography (EOG) activity exceeded a pre-defined 
threshold (±25 μV) were automatically rejected. 

We used a five-fold nested cross-validation to evaluate the 
performance of the system. The inner cross-validation set was used 
for model selection and the outer cross-validation set was used to 
estimate the generalization error. For each outer cross- validation 
set, 20% of the data were used for testing and the rest were used 
for training and model validation. In order to select the models, the 
datasets were further divided into five folds. For each fold, 80% of 
the data were used for training the classifier and 20% were used for 
model validation.  

The test results are shown in Table 1. The columns show the 
subject IDs, and the first row shows the selected configuration. For 
subjects AB1 and AB4, the combination of MRP and CPBR led to 
superior results (configuration 1), while for subjects AB2 and 
AB3, the combination of all three neurological phenomena using 
the AND operation was the best configuration (configuration 5).  

The next three rows show the average of the TP, FA and FP rates 
on the test sets, consisting of the average of five runs over the outer 
cross-validation set. The numbers in parentheses show the standard 
deviations. 
     

4. DISCUSSION AND CONCLUSIONS 
 
A novel, improved self-paced brain interface is proposed. This SBI 
system uses features extracted from three neurological phenomena 
(MRP, CPMR and CPBR) to identify IC commands. 

We compared the results with those reported in [1] (see the last 
three rows in Table 1), as both studies used similar experimental 
and evaluation paradigms. The average TP rate showed a 
significant increase to 56.19% compared to 29.04% from [1]  , and 
the average  FP rate also decreased significantly to 0.14% 
compared to 1.25% from [1]   (see Table 1). This decrease in the 
FP rate also translated into the proposed design having an average 
of 1.11 FPs every 100 seconds. The improved design of another 
SBI called the LF-ASD, had an average FP of 1 every 6 seconds 
[8], while and the SBI proposed in [1] had a FP of 1 every 10.5 
seconds. The improved SBI is thus able to recognize a longer NC 
period without having a FP, while achieving an acceptable TP rate 
depending on the target application. These results indicate that the 
new SBI is superior to that in [1]. This superior performance, 
however, entails an increase in the complexity of the system.  
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