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ABSTRACT

This paper describes a novel approach for estimating the best hy-
pothesis of a given word lattice, the hypothesis lattice, using another
word lattice, the reference lattice, and its application to large vocab-
ulary automatic speech recognition. This approach selects the word
sequence in the hypothesis lattice which maximizes a smoothed es-
timate of the word accuracy with respect to the reference lattice. It is
shown in the paper that two algorithms similar to the Viterbi and the
forward-backward algorithms can be used to estimate the hypothesis
which approximately maximizes this objective function. We present
in this paper two setups to test the performance of our approach. In
the rst setup, only one lattice is used as both the reference and the
hypothesis lattices. In the second setup, two lattices produced by
different systems are used to calculate the best hypothesis. In each
setup, we test our approach on two Arabic broadcast news speech
recognition tasks. Compared to the baseline results, up to 2.1% rela-
tive improvement in the word error rate (WER) is obtained by using
our approach.

Index Terms— Lattice scoring, confusion network, ASR de-
coding

1. INTRODUCTION

In automatic speech recognition systems, the maximum a posteriori
probability (MAP) is the standard decoding criterion. The hypoth-
esis selected using the MAP criterion minimizes an estimate of the
sentence-level error. However, speech recognition systems are eval-
uated based on their word error rate (WER) not the sentence-level
error. This motivates selecting a hypothesis which minimizes an
estimate of the word error rate instead of the one maximizing the
sentence-level posterior probability.

In large vocabulary speech recognition systems, it is commonly
the case that word lattices are used as a compact representation of
the alternative hypotheses produced by the decoder. Word lattices
provide more accurate representation of the search space compared
to other forms like N-best lists. However, calculating pair-wise word
error rates for different hypotheses in the lattice is computationally
infeasible and therefore many algorithms were developed to mini-
mize an estimate of the word error rate in a computationally feasible
way. This problem was addressed in [1], and an algorithm was de-
scribed to carry out a practical approximate word error minimization
on word lattices. This is achieved by nding an alignment of all the
words in the lattice which identify mutually supporting and com-
peting word hypotheses. Then a new sentence hypothesis is formed
by concatenating the words with maximal posterior probability from
different non-overlapping classes of words in the lattice. In [2],

the problem is formulated as the problem of nding the hypothesis
which minimizes a Bayesian risk function related to the word error
rate. To avoid the computational problems associated with estimat-
ing this hypothesis, many approaches to segment the word lattice to
non-overlapping regions are described. A frame-based error rate was
introduced in [3], and it was shown that it is closely correlated with
the word error rate. This was used to avoid the need of dynamic pro-
gramming alignment to calculate an estimate of the pair-wise word
error rate.

In this paper, we describe an approach to nd the hypothesis in
a lattice which maximizes an estimate of the expectation of the word
accuracy of this hypothesis lattice with respect to the same lattice or
another reference lattice. Contrary to most previous approaches, the
approach proposed here uses a non-Bayesian approximation of the
word error rate which allows using one lattice or two lattices gen-
erated by different systems to estimate the best hypothesis without
making any changes to the algorithm. Our approach represents an
intermediate choice between calculating an approximate word-based
estimate of word errors [1], and [2], and calculating a frame-based
estimate of word errors [3]. This is achieved by taking the phonetic
similarity between words into consideration while estimating word
errors. We approximate the word accuracy of one lattice with respect
to another by an estimate of the expected value of the word accuracy
using the joint posterior probability mass function of the hypothe-
sis and the reference word sequences. Using this formulation, we
propose an algorithm based on the Viterbi algorithm to estimate the
best hypothesis. We propose also another algorithm similar to the
forward-backward algorithm to estimate the conditional values of
our estimate of the word accuracy given the word arc. These values
are then used by an algorithm similar to the confusion network (CN)
algorithm, [1], to generate the best hypothesis. It is interesting to
note that if the smoothed approximation of the pair-wise word error
is replaced by a zero-one function and the same lattice was used as
both the reference and the hypothesis lattices, we get the same word
sequence obtained by MAP scoring. Also if the hypothesis word se-
quences are assumed to have the same posterior probability, then the
objective function is reduced to the objective function used by many
previous approaches [1], and [2].

In the next section, we will formulate the problem and describe
our objective criterion. In Section 3, the algorithms used in esti-
mating the best hypothesis based on our objective criterion are de-
scribed. The experiments performed to evaluate the performance of
our approach are described in Section 4. Finally, Section 5 contains
a discussion of the results and future research. We will use capi-
tal letters to represent random vectors and the corresponding small
letters to represent their realizations.
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2. PROBLEM FORMULATION

In this section, we will discuss how a computationally feasible ap-
proximation of the word error rate can be derived. This approxi-
mation is based on an estimate of the expected word accuracy of
the hypothesis lattice with respect to the reference lattice over the
joint posterior probability mass function of the reference and the
hypothesis word sequences. Then we show how the problem can
be reduced to estimating the word sequence which maximizes the
product of the posterior probability of the hypothesis word sequence
and a smoothed approximation of the average word accuracy of the
hypothesis word sequence with respect to all possible reference se-
quences in the reference lattice. We describe also an alternative ap-
proximation by using the conditional value of the objective function
given the word arc as a measure of the accuracy of the arc.

Given two lattices, a measure of the word accuracy of the hy-
pothesis lattice with respect to the reference lattice can be approxi-
mated by

EP (H,R|Y )[A(h, r)] ≈∑
R

∑
H

P (r|Y = y)Q(h|Y = y)Â(h, r), (1)

where EP (H,R|Y )[.] is the expected value over the joint probabil-
ity mass function (PMF) of the hypothesis word sequence, H , and
the reference word sequence, R, given the observation vector Y ,
A(h, r) is the word accuracy of h with respect to r, P (r|Y = y) is
the posterior probability of the reference string r estimated from the
reference lattice,Q(h|Y = y) is the posterior probability of the hy-
pothesis string h estimated from the hypothesis lattice, and Â(h, r)
is a smoothed approximation of the word accuracy of h with respect
to r which takes phonetic similarity into consideration.

Our goal is to select the word sequence in the hypothesis lattice
which maximizes our estimate of the word accuracy with respect
to the reference lattice as given in Equation 1. We call this ap-
proach the maximum smoothed word accuracy (MSWA) approach.
To achieve this goal, the selection rule can be written as

h∗ = arg max
h
Q(h|Y = y)

∑
R

P (r|Y = y)Â(h, r), (2)

where h∗ is the hypothesis word sequence which maximizes our ob-
jective function. This word sequence can be estimated using the
Viterbi algorithm as will be discussed in the next section.

Alternatively we can assign to each word arc, w, in the hypothe-
sis lattice, the conditional value of the objective function in Equation
1 given this word arc, i.e.

γ̃w =
∑
R

∑
H:w∈h

P (r|Y = y)Q(h|Y = y)Â(h, r). (3)

These values can be estimated using an algorithm similar to the
forward-backward algorithm. We will discuss in the next section
how the confusion network (CN) algorithm, [1], can be used to nd
the best word sequence in the hypothesis lattice using these values
in Equation 3 instead of the posterior probabilities of the word arcs.

3. IMPLEMENTATION

In this section, we present our implementation of the two approaches
described in the previous section to use the objective function in
Equation 1 to select the best word sequence from the hypothesis

lattice. First we describe the MSWA algorithm to nd the word se-
quence in the hypothesis lattice which maximizes our objective func-
tion according to Equation 2 by using the Viterbi algorithm. Then
we will describe the MSWA-CN algorithm, which is based on the
CN algorithm, to estimate the best word sequence.

The estimation of the word accuracy, A(h, r), of the word se-
quence h with respect to the word sequence r involves the calcu-
lation of the Levenshtein distance between the two sequences. The
Levenshtein distance is de ned as the number of substitutions, dele-
tions, and insertions in h with respect to r conditioned on an align-
ment of the two sequences that minimizes a weighted sum of these
error types. To avoid the computational infeasibility of calculating
the pair-wise Levenshtein distance between each two possible paths
in the reference and the hypothesis lattices, we condition the align-
ment of the two paths and therefore the calculation of their Leven-
shtein distance on the segmentation of the hypothesis path. Instead
of counting the different types of word-level errors, we use an ap-
proximate measure of word accuracy which takes phonetic similar-
ity into consideration. The approximate measure of the accuracy of a
word arc, w, in the hypothesis lattice with respect to a path, g, which
may start or end in the middle of an arc in the reference lattice such
that it coincides with w in time, i.e. both have the same starting and
ending times, is

Â(w, g) = max
u∈g

N∑
i=1

Âp(wi, ui), (4)

where Âp(wi, ui) is an estimate of the accuracy of the phone wi
with respect to ui, wi is the ith phone of the word w, ui represents
the part of the word arc u which coincides withwi in time, andN is
the number of phones in w.

The approximate phone-level accuracy, Âp(wi, ui), is given by

Âp(wi, ui) = max
q∈ui

d(wi, q), (5)

where q is one of the phones in ui, and d(wi, q) is given by

d(wi, q) =

⎧⎪⎨
⎪⎩

−1 +
4eiq
li+lq

if wi = q

−1 +
2eiq
li+lq

if wi �= q

(6)

where li is the length of wi in frames, lq is the length of q in frames,
eiq is the overlap between wi and q in frames.

We used two approaches to estimate the hypothesis word se-
quence which will approximately maximize our objective function.
For both approaches, the forward-backward algorithm has to be ap-
plied to the reference lattice and the state sequence for each arc in
the reference lattice has to be known. These two requirements allow
us to calculate the forward probabilities, αg , the backward proba-
bilities, βg , and the posterior probabilities, γg , for any path g in the
reference lattice which may start or end in the middle of an arc. In
the rst approach, we used the Viterbi algorithm to estimate the word
sequence given by Equation 2. The steps of the Viterbi algorithm
are

1. Initialization: For each starting arc in the hypothesis lattice,
ws ∈ S,

αws = P (ws)
k, (7)

ζwsg = Â(ws, g) ∀g ∈ Gws , (8)
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where P (ws) is the likelihood ofws, k is the acoustic weight,
Gws is the set of paths in the reference lattice which coincides
with ws in time.

2. Forward Propagation: The update equations of the Viterbi al-
gorithm for each non-starting arc, w /∈ S, is

ζwg = Â(w, g) +

∑
q∈Qg

αqtqgζv∗q∑
q∈Qg

αqtqg
∀g ∈ Gw, (9)

v∗ = arg max
v∈Vw

∑
g∈Gw

γg

∑
q∈Qg

αqtqgαvtvwζvq∑
q∈Qg

αqtqg
, (10)

Prec[w] = v∗, (11)

αw = αv∗ tv∗wP (w)k, (12)

where Qg is the set of paths in the reference lattice which
precedes the path g, Vw is the set of arcs preceding w in the
hypothesis lattice, and Gw is the set of paths in the reference
lattice which coincides with w in time, Prec[w] is the best
preceding word of w, αq is the forward probability for the
path q, tqg is the reference lattice transition probability de-
rived from the language model, and if g starts in the middle
of an arc in the reference lattice, tqg = 1.

3. Backtracking:

(a) Set i = 0,

wi = arg max
we∈E

γwe

∑
g∈Gwe

γgζweg, (13)

where E is the set of ending arcs in the hypothesis lat-
tice.

(b) While wi is not a starting arc, i.e. wi /∈ S

• wi+1 = Prec[wi]

• i = i+ 1

End.

4. Set L = i and exit with the output word sequence
{wL, wL−1, . . . w0}.

The second approach is based on the idea of assigning to each
arc in the hypothesis lattice the value of the objective function condi-
tioned on this arc as given by Equation 3. To estimate these values,
we use an algorithm similar to the forward backward algorithm. The
algorithm is very similar to the previous MSWA algorithm used in
the rst approach. But it replaces the maximization over previous
arcs in the hypothesis lattice by the sum over all previous arcs, and
makes a backward propagation step as well as the forward propaga-
tion step. The steps of the algorithm are

1. Initialization:

• For each starting arc in the hypothesis lattice, ws ∈ S,

αws = P (ws)
k, (14)

ζwsg = Â(ws, g) ∀g ∈ Gws . (15)

• For each ending arc in the hypothesis lattice, we ∈ E,

βwe = 1, (16)

ηweg = 0 ∀g ∈ Gwe . (17)

2. Forward Propagation: The update equations of the forward
propagation part of the algorithm for each non-starting arc,
w /∈ S, is

ζwg = Â(w, g) +

∑
q∈Qg

∑
v∈Vw

αqtqgαvtvwζvq∑
q∈Qg

αqtqr
∑

v∈V αvtvw

∀g ∈ Gw, (18)

ζw = γw
∑
g∈Gw

γgζwg , (19)

αw =
∑
v∈Vw

αvtvwP (w)k, (20)

3. Backward Propagation: The update equations of the back-
ward propagation part of the algorithm for each non-ending
arc, w /∈ E, is

ηwg =

∑
f∈Fg

∑
b∈Bw

βf tgfβbtwb(ηbf + Â(b, f))∑
f∈Fg

βf tgf
∑

b∈Bw
βbtwb

∀g ∈ Gw, (21)

ηw = γw
∑
g∈Gw

γgηwg , (22)

βw =
∑
b∈Bw

βbtwbP (b)k, (23)

where Fg is the set of paths in the reference lattice which
follows the path g, Bw is the set of arcs following w in the
hypothesis lattice, βf is the backward probability for the path
f , tgf is the reference lattice transition probability from g to f
derived from the language model, and if g ends in the middle
of an arc in the reference lattice, tgf = 1.

4. For each word arc w in the hypothesis lattice,

γ̃w = ζw + ηw (24)

The confusion network algorithm [1] is then used to nd the
best path in the hypothesis lattice after replacing the word posterior
probability in the original algorithm with these conditional values of
the objective function, γ̃w. Therefore we call this second approach
the MSWA-CN approach.
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System RT04 BNAT05
Baseline 14.6 15.5
CN 14.5 15.4
MSWA 14.5 15.4
MSWA-CN 14.3 15.2

Table 1. Word error rates (%) on the Arabic RT04 and BNAT05
evaluation data using the unvowelized system.

4. EXPERIMENTS AND RESULTS

This section gives the experimental results of applying the two ap-
proaches described in the last section on the tasks of the Arabic
DARPA 2004 Rich Transcription (RT04) evaluation data, which con-
sists of 3 shows of 25 minutes each, and the 2005 broadcast news
Arabic test set (BNAT05) which consists of 12 shows of 30 minutes
each from 5 different sources provided by BBN. We use two sys-
tems in our experiments: an unvowelized system and a vowelized
system. The main difference between the two systems is the ex-
plicit modeling by the vowelized system of the short vowels which
are pronounced in Arabic but almost never transcribed. For both
systems, each phoneme is represented by 3 HMM states with left-
to-right topology with the exception of modeling short vowels with
2 states in the vowelized system. For both systems, the raw features
are 13-dimensional PLP features computed every 10 ms. from 25-
ms. frames. The recognition features are computed by splicing to-
gether 9 frames of raw features, projecting the spliced features to 40
dimensions using LDA, and then applying maximum likelihood lin-
ear transformation (MLLT) to the projected features. Both systems
use a pentaphone acoustic context and comprise 5K context depen-
dent states and 400K Gaussians. Both systems are trained with a
combination of fMPE and MPE on 135 hours of supervised data and
1800 hours of unsupervised data.

In the context of speaker-adaptive training, both systems use vo-
cal tract length normalization (VTLN), and feature-space MLLR. A
single pass of MLLR adaptation, using a regression tree to generate
transforms for different sets of mixture components, is also done.
The language model is a 617K vocabulary 4-gram LM with 56M n-
grams trained with modi ed Kneser-Ney smoothing. The vowelized
system is a cross-adapted system as the transcripts generated by the
unvowelized system were used to train the speaker-adaptive trans-
forms for the vowelized system.

We tested our Viterbi-based MSWA algorithm and the MSWA-
CN algorithm using three different setups. In the rst setup the lat-
tices produced by the unvowelized system were used as both the ref-
erence lattice and the hypothesis lattice. In the second setup, the
lattices produced by the vowelized system were used as both the
reference lattice and the hypothesis lattice. In the third setup, the lat-
tices produced by the vowelized system were used as the hypothesis
lattice, while the lattices produced by the unvowelized system were
used as the reference lattice. Due to the different phoneme set of
the unvowelized system, we did not score phonemes which exist in
the vowelized system but not in the unvowelized system in the third
setup during the estimation of the approximate word accuracy.

As shown in Table 1, the WER results improved by 2.1% rela-
tive compared to the baseline by using the MSWA-CN algorithm.
The MSWA-CN algorithm outperforms using either the Viterbi-
based MSWA algorithm or the CN algorithm by itself. Although
the gain is small but it is consistent over the two test databases.

The results in Table 2 show that the gain, if any, compared to

System RT04 BNAT05
Baseline 12.9 13.9
CN 12.8 13.9
MSWA 12.8 13.9
MSWA-CN 12.7 13.8

Table 2. Word error rates (%) on the Arabic RT04 and BNAT05
evaluation data using the vowelized system.

System RT04 BNAT05
Baseline 12.9 13.9
MSWA 12.9 13.9
MSWA-CN 12.7 13.8

Table 3. Word error rates (%) on the Arabic RT04 and BNAT05 eval-
uation data using an unvowelized reference lattice and a vowelized
hypothesis lattice.

the baseline of any of the three algorithms is very small on both
the Arabic RT04 and BNAT05 test data. However, still the gain from
the MSWA-CN algorithm outperforms using either the Viterbi-based
MSWA algorithm or the CN algorithm by itself.

Finally, the results in Table 3 show that there is no gain obtained
from using both the unvowelized and the vowelized lattices com-
pared to using the vowelized lattices alone. This can be attributed
to the facts that the difference in performance between the vow-
elized and the unvowelized systems is large, the vowelized system
is a cross-adapted system which uses the output of the unvowelized
system, and that phonemes like short vowels are modeled in the vow-
elized system but not modeled in the unvowelized system.

5. DISCUSSION

In this paper, we examined using a new smoothed word accuracy
(SWA) objective function for lattice scoring. We described two algo-
rithms which use this objective function to estimate the best hypoth-
esis in a given lattice: the Viterbi-based MSWA algorithm and the
MSWA-CN algorithm. The results reported in the paper show that
small consistent improvements are achieved by using the MSWA-
CN algorithm compared to the MSWA and the CN algorithms.

We plan to investigate the performance of our approach on sys-
tems based on signi cantly different models of comparable perfor-
mance. We also intend to assess the usefulness of the conditional
score in Eq. 3 for con dence annotation.
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