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ABSTRACT
We evaluate system combination techniques for automatic speech
recognition using systems from multiple sites who participated in
the TC-STAR 2006 Evaluation. Both lattice and 1-best combination
techniques are tested for cross-site and intra-site tasks. For pairwise
combinations the lattice based approaches can outperform 1-best
ROVER with con dence scores, but 1-best ROVER results are equal
(or even better) when combining three or four systems.

Index Terms— speech recognition, system combination

1. INTRODUCTION

Most state-of-the-art automatic speech recognition (ASR) systems
today include multiple contrasting systems, which are ultimately
combined to produce the nal hypothesis. There is consensus that
improvements from combination are usually best when systems are
suf ciently different, but there is uncertainty about which system
combination method performs the best. This paper investigates var-
ious system combination techniques and compares the results over
con gurations including two, three, and four, component systems.

The component ASR systems are the nal evaluation systems
from the English part of the TC-STAR 2006 Evaluation campaign.
Our partners kindly provided us their best lattice sets for both the
development and evaluation sets. In addition, from one partner we
received four lattice sets used in their internal system combination.

The aim of system combination for ASR is to minimize the
expected WER given multiple system outputs. Bayes decision rule
with a Levenshtein cost function L provides the general framework
for a minimum WER decoder:

{wN
1 }opt = argmin

wN
1

8
<

:

X

vM
1

L(wN
1 , vM

1 )p(vM
1 |xT

1 )

9
=

;
(1)

with a word sequence wN
1 and the posterior probability p(vM

1 |xT
1 )

for word sequence vM
1 given the acoustic observation sequence xT

1 .
The exponential size of the search and summation space forbids a
direct application of this decision rule for LVCSR systems [1]. Word
lattices are an ef cient way to narrow the search space, but they still
represent a huge number of hypotheses and a direct application of
Eq. (1) still is prohibitive. The confusion network (CN) and mini-
mum Time Frame Word Error (fWER) decoder are two approaches
using different approximations to realize minimum WER decoding
on word lattices [2, 3]. For both approaches, relative improvements
of up to 5% in WER are reported.

The main contribution of this work is to compare multiple sys-
tem combination approaches in settings with different numbers of

component systems. We examine three types of system combination
methods, each in its standard form and in a variant using system
priors. The latter is of particular interest for the cross-site task
because the provided lattice sets differ strongly in their individual
performance. System dependent weights can balance the impact of
each system and thus improve the combination performance.

The most widely used system combination approach to date,
ROVER [4], is a simple voting mechanism over the top hypothesis
from each component system. In this paper we use a variant utilizing
con dence scores and system dependent weights [5]. Extensions
of CN and minimum fWER decoding can be employed in system
combination as well, and have the advantage of combining multiple
hypotheses from each component system (rather than just the top
hypothesis as in the standard ROVER approach).

Next, Section 2 describes the three system combination tech-
niques that we explore in this work. Section 3 provides the exper-
imental setup, sketches the problems we encountered when dealing
with lattices from ve different sites, and presents the results. Fi-
nally, we summarize our conclusions in Section 4.

2. SYSTEM COMBINATION METHODS

2.1. ROVER

ROVER [4] is a two step procedure comprised of alignment and
voting, where the alignment depends on the system permutation.
Exhaustive experiments have shown that best results are obtained
when systems are ordered by increasing WER.

We use a slightly modi ed version of the original average con-
dence score voting function, where the con dence scores provided
by each system are weighted with additional system dependent
weights λ1, . . . , λL:

score(w, i) =
LX

l=1

λl [α δ(w, wl,i) + (1− α)confl(w, i)] , (2)

The δ is the Kronecker-δ, i denotes the position in the alignment,
and L is the number of systems. System votes and con dence scores
are smoothly interpolated via α. Basic ROVER is derived by setting
λ1 = · · · = λL = 1/L.

Con dence scores are calculated directly from the lattices using
the approach described in [6].

2.2. Confusion Network Combination

A Confusion Network (CN) is a directed graph where all outgoing
arcs of a given node have the same target node. CNs consist of
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a series of words slots, where each slot contains the hypothesized
words for that position in the segment. For this structure, Eq. (1) has
a simple solution that selects the maximum posterior word in each
slot. In [2], an iterative algorithm is presented that transforms a word
lattice into a CN by successive arc alignments.

Confusion network combination (CNC) is a generalized ROVER
algorithm that aligns CNs derived from several systems [7]. The
result is a new CN. The word posterior probabilities for the ith slot
in the combined CN can easily be calculated as the joint probability
of the system speci c posteriors:

p(w|i, xT
1 ) =

LX

l=1

p(Sl|i, xT
1 )p(w|Sl, i, x

T
1 ) (3)

Here Sl is the lth system. In this work the system priors p(Sl|i, xT
1 )

are approximated by a system-dependent constant λl.
N-Best ROVER [8] is another common approach to system com-

bination. It is a special case of CNC where the system CNs are
constructed from a multiple alignment of each component system
N-Best list, rather than from lattices.

2.3. Minimum fWER Combination

An alternative approach to simplify the decision rule is to replace
the Levenshtein distance by a computationally cheap cost function
C: the fWER [3]. The important property of the fWER is that its
calculation does not require an expensive word alignment. Replac-
ing the Levenshtein distance in Eq. (1) by the de nition of the fWER
gives the Minimum fWER decision rule:

{[w; t]N1 }opt = argmin
[w;t]N1

NX

n=1

Ptn

t̂=tn−1+1

ˆ
1− p(wn|t̂, xT

1 )
˜

1 + α(tn − tn−1 − 1)
(4)

[w; t]N1 denotes a sequence of words together with their ending
times, where t0 is the lattice start time and tN is the lattice end time.
The term p(·|t, xT

1 ) is the frame-wise word posterior distribution,
which can be ef ciently calculated by a modi ed forward/backward
algorithm.

As opposed to CN decoding, where word times and boundaries
are only used to align the words (and posterior probabilities then
depend solely on the resulting word positions), the fWER decod-
ing approach preserves the lattice structure and thus the output is
produced with correct word boundary times. The minimum fWER
decoding approach for a single lattice can easily be extended to
minimize the WER over multiple lattices, as in [5]. According to
Eq. (4) we have to change the calculation of the word posteriors and
to de ne the search space.

From each lattice Gl of each system Sl we derive
a sequence of frame-wise word posterior distributions
p(·|Sl, 1, xT

1 ), . . . , p(·|Sl, T, xT
1 ). In our experiments we use

the joint probability over the system dependent posteriors to
calculate a multiple system frame-wise word posterior probability:

p(w|t, xT
1 ) =

LX

l=1

p(Sl|t, xT
1 )p(w|Sl, t, x

T
1 ) (5)

Similar to CNC, the system priors p(Sl|t, xT
1 ) are approximated by

a system dependent constant λl.
The search space is simply the union of all latticesG1, . . . , GL.

The number of hypotheses can be increased by building the time
conditioned lattice from the union.

3. EXPERIMENTS

3.1. Corpora

We present results on the EPPS 2006 English corpus. The corpus
contains parliamentary speeches from the European Parliament and
was collected within the TC-STAR project. All audio les are
monaural with 16-bit resolution at a sampling rate of 16kHz.

The 2006 TC-STAR Evaluation campaign took place in Febru-
ary 2006. Besides RWTH Aachen [9], the following project partners
participated in the English task: LIMSI [10], IBM [11], UKA [12],
and IRST [13]. Afterward, all project partners kindly provided us
their best performing lattice set. In addition, one site provided four
lattice sets that they used for internal system combination.

3.2. Experimental Setup

The original lattice sets from the ve sites are pairwise completely
different. They use different formats, different segmentations, have
different density, and are not normalized, e.g. they still include com-
pound words like “it has” or different forms of abbreviations like
“EU” as a single word or as two words: “E. U.”. Unfortunately, we
had to exclude one lattice set, because we were not able to prepare it
such that we could reproduce the Viterbi decoding result.

For the remaining four sets, the rst task was to unify the seg-
mentation. Our basic approach was to concatenate lattices until all
sites had a common pause of at least one second. The number of seg-
ments for the original lattice sets ranged from 183 to 1607. Our nal
uni ed segmentation consists of 76 segments for the development
set and 60 for evaluation set.

The next step was to normalize the lattices. We mapped all ller
words, noises and silence to a single “non-word” label. Then we
applied a lter on each lattice in order to remove “non-word” clouds,
see [5]. This ltering makes the posterior scores calculated from a
lattice more reliable. For compound words and abbreviations we
split them into the largest possible sequence of chunks, e.g. “EU” to
“E. U.”. The time frames of an arc were distributed over the chunks
according to the number of characters per chunk.

The last step was to reduce the density in order to make the
posterior decoding methods more stable and to generate lattice sets
of similar density. For the cross-site task the maximum density was
given by the least dense lattice set, see Table 1.

Table 1. Densities for the EPPS 2006 English lattices. For the cross-
site task all densities were calculated on the uni ed segmentation.

CROSS-SITE INTRA-SITE

La
tti
ce
Se
t

avg. density avg. density
Unpruned Pruned Unpruned Pruned

de
v

ev
al

de
v

ev
al

de
v

ev
al

de
v

ev
al

1 24 31 24 31 347 284 89 80
2 412 337 24 22 356 298 90 83
3 333 268 33 29 342 292 88 82
4 37 29 37 29 347 296 90 82

The combination experiments for ROVER used software pro-
vided by NIST, CNC experiments used the SRILM toolkit [14], and
Minimum fWER experiments used software from RWTH.

Lastly, the word hypothesis from CNC combination has no word
time boundaries, but NIST tools require reasonable boundaries for
WER scoring. The standard approach is to run a forced alignment on
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the CNC output, but we did not have access to the systems used for
creating the source lattices. Therefore, we developed an algorithm
that solved the problem by extracting word time and posteriors from
the source lattices. First, we reduce the source lattice to its time-
conditioned form. Then, if it contains a path matching the CNC
output, we take the boundaries from that path and stop. If it does
not contain a matching path, we build the time frame-wise word
posterior distributions p(w|t, xT

1 ) from the lattice and align the CNC
output against it and then use the boundaries from the best alignment
as word boundaries.

3.3. Results

We evaluate the system combination approaches from Section 2 for
various con gurations of the component systems we have available.
Table 2 presents WER results for the possible combinations among
systems from four different institutions (cross-site), as well as for
combination of a set of four intra-site lattices. Next we identify the
signi cant trends from this collection of results.

Single system performance for the cross-site systems is pre-
sented in the rst major row. The rst major column provides the
Viterbi decoding WER for each individual lattice, while the second
and third major columns show the CN and fWER decoding WER.
While CN and fWER are sometimes better, no method is reliably
superior.

The second major row contains the six pair-wise system combi-
nations. Both unweighted and weighted combinations are presented,
and the weighted combination is consistently better for all methods.
Individual system weights were tuned on the development set and
then applied to the evaluation set for the weighted system combina-
tions. For the case of two component systems, weighted CNC and
fWER are always better ROVER combination.

The third major row provides all three-way system combinations
for the cross-site systems, and the fourth major row provides the
four-way combination. For all three and four way combinations,
ROVER achieves equal or lowerWER than both the CNC and fWER
combination. In addition, weighted combination is always better
than unweighted combination.

The lower half of Table 2 shows WER for a separate set of four
within-site lattices. The rst major row here compares individual
Viterbi, CN, and fWER decoding, where there are no clear trends.
The nal row of the table reinforces the conclusions from the cross-
site system combination: all three combination methods are close,
but ROVER is always best.

The ROVER result for the intra-site combination is the same as
the WER published by that site, which validates the preprocessing
in our experiments. The best result published to date on the eval set
is 6.9% WER, which is ROVER over the best output from the ve
participating partners. We can also achieve 6.9% WER with just the
four sites available in this work, by applying ROVER across our four
combination results: the weighted cross-site ROVER, CNC, fWER,
and intra-site ROVER.

4. CONCLUSIONS

We found that when more than two complementary systems
are available for system combination, ROVER most consistently
achieves the best results. Weighted CNC and fWER combination
only out-perform ROVER when just two systems are available for
combination. With only two systems, combination approaches that
include multiple hypotheses from each system can obtain better re-
sults. But, with increasing numbers of systems the result converges
to the ROVER result (or can actually be slightly worse).

One bene t of fWER combination that is not present in ROVER
or CNC is that the hypothesized output preserves the word context
(as well as word times) from the lattice. When the hypothesis space
is restricted to the union of the lattices, the nal result is a valid path
from one of the original lattices. For this work we did not observe
a degradation in WER when using this union, compared to a time-
conditioned form of the union (which is not restricted to paths in the
lattice). The ability to preserve context might bene t downstream
systems such as information extraction.
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[9] J. Lööf et al., “The 2006 RWTH parliamentary speeches tran-
scription system,” in Proc. ICSLP, 2006.

[10] L. Lamel et al., “The LIMSI 2006 TC-STAR transcription
systems,” in Proc. TC-STAR Workshop, 2006.

[11] B. Ramabhadran et al., “The IBM 2006 speech transcription
system for european parliamentary speeches,” in Proc. ICSLP,
2006.
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Table 2. Results for the EPPS 2006 English lattices. The upper part contains the results on the cross-site task where lattice sets from four
different sites were combined. The lower part contains the results on a separate four lattice set from a single site. Individual lattice results
are derived via Viterbi, Confusion Network (CN), and Minimum fWER decoding. Individual systems do not have any weighted or oracle
combinations, so those cells are blank. Three system combination approaches are applied: ROVER with con dence scores, CN combination
(CNC), and fWER combination. For the standard condition no system weights are used, for the weighted condition, system dependent weights
were tuned on the development set. The ROVER Oracle WER is the minimum possible WER when combining the single best hypothesis
from each individual system.

Viterbi/ROVER CN/CNC Minimum fWER Oracle
WER [%] WER [%] WER [%] WER[%]
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CROSS-SITE LATTICES

Individual Cross-Site Systems
X 10.5 9.0 10.4 8.8 10.2 8.8

X 11.4 9.0 11.5 9.2 11.4 9.2
X 12.8 10.4 12.8 10.3 12.6 10.4

X 13.9 11.9 14.0 12.2 13.8 11.7
Pairwise Cross-Site System Combinations
X X 10.2 9.2 10.2 8.8 9.6 8.0 9.6 8.0 9.4 7.9 9.4 7.9 6.4 5.2
X X 10.4 9.2 10.2 8.8 12.2 7.9 12.2 7.9 9.8 8.4 9.8 8.4 6.7 5.5
X X 10.8 9.9 10.2 8.8 12.2 10.5 10.1 8.7 11.0 9.9 10.1 8.7 7.2 6.1

X X 11.0 9.0 11.0 9.0 10.3 8.3 10.3 8.3 10.4 8.5 10.4 8.5 7.4 5.4
X X 11.4 9.5 11.4 9.5 11.9 9.7 10.9 8.8 11.8 10.3 10.8 9.0 7.5 5.9

X X 12.7 10.8 12.7 10.8 12.9 10.6 12.9 10.6 12.2 10.5 11.1 9.4 8.0 6.2
Three-way Cross-Site System Combinations
X X X 9.1 7.2 9.1 7.2 9.5 7.6 9.5 7.6 9.0 7.6 9.0 7.6 5.3 4.2
X X X 9.2 7.5 9.2 7.5 10.0 8.0 9.6 7.7 9.5 8.2 9.2 7.8 5.5 4.6
X X X 9.5 7.8 9.5 7.8 10.2 8.3 9.6 7.8 9.7 8.3 9.4 8.0 5.7 4.6

X X X 9.8 7.8 9.8 7.8 10.8 8.3 10.7 8.2 10.1 8.5 9.9 8.1 6.0 4.5
Four-way Cross-Site System Combinations
X X X X 8.9 7.3 8.9 7.3 9.6 7.5 9.4 7.4 9.1 7.7 8.9 7.3 4.8 3.9

INTRA-SITE LATTICES

Individual Intra-Site Systems
X 11.4 9.0 11.6 9.3 11.3 9.0

X 11.6 9.4 11.7 9.7 11.5 9.5
X 11.8 9.5 11.9 9.7 11.7 9.4

X 11.7 9.4 11.8 9.6 11.5 9.3
Four-way Intra-Site System Combinations
X X X X 10.7 8.6 10.7 8.6 11.1 8.8 11.0 8.9 10.7 8.7 10.6 8.7 8.0 6.2

IV ­ 1148


