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ABSTRACT

This paper presents two new lookahead methods of 

constructing phonetic decision trees (PDTs) for acoustic 

model state tying, a constrained method and a stochastic 

method. The constrained lookahead method searches for 

optimal phonetic questions among pre-selected question sets, 

and reduces contributions of deeper decedents as a function 

of their levels in the tree. The stochastic full lookahead 

method uses subtree size instead of likelihood gain as a 

judgment in selecting a phonetic question for a node split, in 

order to find a compact tree that is consistent with training 

data. Since the computational cost of exhaustive lookahead 

is prohibitively high, a stochastic subtree generation method 

is used to explore most promising question at each node. 

We also propose using a phone-state dependent threshold 

instead of a fixed threshold of likelihood gain to decide if a 

node split should continue or not. Furthermore, we use a fast

Confusion Network (CN) algorithm to combine recognition 

hypotheses produced by using acoustic models from 

different PDT training methods. Experimental results show 

that the proposed lookahead methods consistently decrease 

model size, and the integration of recognition hypotheses 

consistently improves recognition accuracy.  

Index Terms— phonetic decision trees, constrained 

lookahead, stochastic full lookahead, phone-state 

dependent threshold

1. INTRODUCTION 

1Phonetic decision tree (PDT) state tying is commonly used 

in acoustic modeling for large vocabulary continuous  

speech recognition since it can model triphone units or 

contexts which do not occur in training data [1]. Usually, a 

PDT is built by using a top-down greedy search procedure. 

Starting from the root node of the tree, each node is split 

according to the phonetic question which results in the 

largest increase of likelihood score in the training data under 

this node. The node splits continue until the likelihood gain 

falls below a threshold. A threshold of data count is also 

applied to ensure that all leaf nodes have sufficient training 
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data. Leaf nodes with different parents are merged if the 

likelihood loss due to the merging is less than a predefined 

threshold, which usually equals the one for likelihood gain. 

Since each node split is based on local likelihood gain, the 

constructed tree is only locally optimal in general. K-step

lookahead search is a technique for overcoming the 

limitation of greedy search. When applied to decision tree 

induction, lookahead method attempts to predict the 

profitability of a split at a node by estimating its effect on 

deeper decedents of the node [2]. Since K-step lookahead 

algorithm has an exponential complexity, usually only one-

step lookahead is used.   

In this paper, we present two novel lookahead methods 

of constructing PDTs for acoustic model state tying. The 

first one is called constrained lookahead. In this method, 

instead of searching for an optimal question within the 

whole question set, we first find n questions which give the 

n-best local increases in likelihood, and then we constrain 

the lookahead search for the optimal question to be among 

the n questions to split the node, where the contribution of 

the deeper decedents is reduced as a function of their levels 

in the tree [2].  The second method is called stochastic full 

lookahead, originally proposed in [3]. In this method, 

instead of using likelihood gain as a judgment to select a 

phonetic question for node split, subtree sizes are used to 

find a compact tree that is consistent with the training data 

set. Since finding an optimal subtree at each node is a NP-

Complete problem, a stochastic method is used to generate 

an ensemble of subtrees for each current node split, and the 

question that minimizes the subtree size is preferred [3]. In 

both methods we propose to use phone-state dependent 

threshold of likelihood gain to decide if a node split should 

go further or not. We also propose to use a fast Confusion 

Network (CN) algorithm [4] to combine recognition 

hypotheses produced by acoustic models resulting from 

different PDT training methods. 

The rest of the paper is organized as the following. 

Section 2 defines the phone-state dependent threshold. 

Section 3 presents the constrained lookahead algorithm. 

Section 4 describes the stochastic full lookahead algorithm. 

Section 5 shows the CN method for combining recognition 

hypothese. In section 6, experimental results on a telehealth 

captioning system are presented. We conclude our work in 

section 7.  
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2. PHONE-STATE DEPENDENT THRESHOLD

In commonly used method of constructing PDTs, for 

example HTK [5], a node is split if the largest increase of 

likelihood score due to the split exceeds a predefined

threshold, where the threshold is kept identical for all phone 

states. Here we propose to use a threshold for likelihood 

gain that is proportional to the occurrence count of data in 

each phone state. For a PDT of phone i and state j, let Lp be 

the log likelihood score of a parent node to be split, Ly and 

Ln be the log likelihood scores of the two children nodes, 

and
ijN  be the total occurrence count under the root node. 

We select the question that maximizes the likelihood gain 

scaled by 
ijN as
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We call
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the phone-state dependent threshold. Compared 

to the fixed threshold in commonly used method, the 

threshold is proportional to the total occurrence count of 

each phone state, which helps prevent phone states with 

large amounts of training data to grow overly large trees. 

The minimum occurrence count threshold of leaf nodes is 

still kept as a constant to ensure sufficient training data for 

estimation of observation probability distributions. 

3. CONSTRAINED LOOKAHEAD 

It is well known that the greedy search method of choosing  

a phonetic question based on largest likelihood gain in the 

current node split only leads to a local optimization of the 

decision tree. It seems plausible that a global optimization 

on decision tree training would lead to improve acoustic 

models. Since the computational cost of global optimization 

is too high, lookahead methods can be used to select the 

phonetic question that produces largest likelihood gain on 

its deeper decedents. However, traditional lookahead 

methods did not yield improved performance in speech 

recognition [2], [6]. Instead it gave worse results than 

conventional PDT training, mainly due to overtraining.  

Here we present a constrained lookahead method to 

optimize the PDTs. At each node, instead of searching for 

the optimal question within the whole question set, we first 

find n questions which give the n-best local increases in 

likelihood, and then we find the optimal question among the 

n questions to split the node through a K-step lookahead. 

The n-best constraint is applied to node splits in each 

lookahead level as well. The rational of the n-best approach 

is that the optimal question is likely one of the n-best

questions at the current node, since these questions in 

general have larger impacts on data partition into leaf nodes 

than questions at decedent nodes. Narrowing the search 

space may also decrease the effect of outliers. Fig. 1 

illustrates the construction of a PDT that employs K-step

lookahead.  

Fig. 1 PDT construction using K-step lookahead. 

It was previously reported that the contribution of likelihood 

gains by the deeper decedents should be reduced with the 

decedent level [2]. Here we adopt the idea and define the 

likelihood gain as a weighted average of likelihood gains at 

successive levels in the K-step lookahead window.  Let 
iL

be the likelihood gain at the ith level, and 
pL equals Ly + 

Ln – Lp. At each node, the likelihood gain is defined as 
k
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where tree_level(root)=0, and we select the question that 

produces the largest L .

4. STOCHASTIC FULL LOOKAHEAD 

Tree size has been an important issue in constructing PDTs. 

One obvious concern is that speech decoding speed is 

dependent on the number of physical states in acoustic 

models, since as the number of physical states increases, it 

takes more time for a decoding engine to compute the 

likelihood scores. The number of physical states is directly 

decided by the sizes of the PDTs. Another important 

concern is that a good model should represent the salient 

clustering structure of data, instead of over fitting the data, 

and as such compact model is also preferred.  

The goal of the stochastic full lookahead method is to 

find small trees consistent with the training data. In contrast, 

traditional tree-pruning based methods first grow a large 

tree by greedy search and then prune off noncontributing 

leaves or subtrees to reduce the size of the tree, which in 

general yields small trees that are not consistent with data.  

Exhaustive lookahead at each node will definitely lead 

to the smallest tree, but the computational cost is 

prohibitively high, and therefore a stochastic approach is 

used. For each question under consideration at the current 

node, the stochastic method generates two ensemble of 

subtrees, one for its left child node and one for its right 

child node, respectively. Each ensemble of subtrees 

provides an estimate of the subtree size. In growing a 

random subtree, when a phonetic question is used to split a 
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node, the split question is drawn randomly with a 

probability proportional to the likelihood gain due to 

splitting the node by this question. Table 1 describes the 

question selection procedure used in the stochastic 

lookahead method, and Table 2 describes the question 

selection procedure in growing the random subtrees at each 

node. We modify the algorithm in [3] such that at each node 

we limit the search space to that defined by the n-best

questions instead of the whole question set, which decreases 

the training time greatly. In addition, the n-best approach 

may yield a good balance between the aspect of model-data 

fit and that of model compactness.  

In determining subtree size, the smallest size of random 

subtrees in an ensemble is taken, since a random subtree by 

its nonexhaustive search nature can only overestimate the 

minimum size of subtree [3]. 

Table 1 Question selection procedure in stochastic  

full lookahead. 

Get a question set QS including n questions which 

give the n-best local increase in likelihood 

For each question QSqi

Split the node into yes-children and no-children 

noyes minmin

Repeat r times 

Grow a random sub-tree, 
yessub of yes-

children 

))(,min(minmin yesyesyes subsizeof

Grow a random sub-tree, 
nosub of no-children 

))(,min(minmin nonono subsizeof

noyesisize minmin

Return 
iq  whose 

isize  is minimal

Table 2 Question selection procedure in  

growing random subtrees. 

Get a question set QS including n questions which 

give the n-best local increase in likelihood 
*q Choose question at random from QS; for each 

question q, the probability of selecting it is 

proportional to the local likelihood increase for 

the training data set 

Return *q

5. INTEGRATION OF RECOGNITION RESULTS 

Upon obtaining recognition hypotheses by using different 

acoustic models from different PDT training methods, we 

put the results together into a simple lattice and then align 

the lattice into a CN by using the fast CN algorithm. The 

final hypothesis is obtained by picking words with the highest 

posterior probabilities at each position in the CN. For detail of the 

fast CN algorithm, please refer to [4]. Fig. 2 is a simple lattice 

constructed from five recognition hypotheses, and Fig. 3 is 

the corresponding CN.  

Fig 2. A simple lattice of recognition results 

Fig. 3 Confusion network for the lattice in Fig. 2 

6. EXPERIMENTAL RESULTS 

6.1 Experimental Setup 

The proposed phonetic decision tree methods were 

evaluated on the Telemedicine captioning system developed 

at the University of Missouri-Columbia. For a detailed 

description of this project, please refer to [7]. Speaker 

dependent acoustic models were trained for 5 speakers Dr. 

1-Dr. 5. A summary of the data set is provided in Table 3. 

The training and test datasets were extracted speech data 

from healthcare speaker’s conversation with clients in mock 

telemedicine interviews. Along with speech durations, word 

counts from transcription texts are also given in Table 3. 

Speech features consisted of 39 components including 13 

MFCCs and their first and second order time derivations. 

Feature analysis was made at a 10 ms frame rate with 20 ms 

window size. Gaussian mixture density based hidden 

Markov model (GMM-HMM)were used for within-word 

triphone modeling, where each GMM contained 16 

Gaussian components. The task vocabulary is of the size 

46,489, with 3.07% of vocabulary words being medical 

terms.  

Table 3. Datasets used: speech (min.)/text (no. of words) 

 Training set Test set 

Dr. 1 210/35,348 29.8/5085 

Dr. 2 200/39,398 14.3/2759 

Dr. 3 145/28,700 19.3/3248 

Dr. 4 180/39,148 27.8/6421 

Dr. 5 250/44,967 12.1/3988 

Total 985/187,561 103.3/21541 

6.2 Experimental Results 

Table 4 gives the recognition accuracies and table 5 gives 

the model sizes of 5 different PDT training methods:   
 Baseline: baseline method 

B-PSDT: baseline plus phone-state dependent threshold 
CLA-1.: 1-step constrained lookahead method 

CLA-2: 2-step constrained lookahead method 

SFLA  : stochastic full lookahead method. 
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We set r =20 for stochastic full lookahead method, and 

n=20 for both constrained and stochastic lookahead 

methods. The value C in phone-state dependent threshold is 

set such that the average threshold of different PDTs equals 

the one used in baseline method, which is 400 in our 

experiments.  

Table 4 Recognition accuracies of different methods (%) 

 Dr. 1 Dr. 2 Dr. 3 Dr. 4 Dr. 5 Avg.

Baseline 81.40 74.16 76.29 78.31 82.40 78.96

B-PSDT 81.39 73.65 76.29 78.32 82.97 79.00

CLA-1  81.44 72.45 76.76 78.31 81.80 78.71

CLA-2  81.46 72.42 76.95 78.20 81.95 78.74

SFLA 81.14 73.90 76.35 78.45 82.92 79.01

Table 5. Model sizes of different methods 

(number of tied states or physical models) 

 Dr. 1 Dr. 2 Dr. 3 Dr. 4 Dr. 5 Avg.

Baseline 2070 1480 1093 1415 1735 1559

B-PSDT 1603 1425 908 1117 1440 1299

CLA-1  1611 1484 918 1131 1476 1324

CLA-2  1625 1509 931 1134 1501 1340

SFLA 1431 1274 879 973 1237 1159

From Table 4 and Table 5 we observe that stochastic full 

lookahead method reduces model size significantly (26% 

relative). Constrained lookahead methods do not produce 

consistent improvements in recognition accuracy.  

Table 6 summarizes recognition word accuracy after 

combining hypotheses from different models, where n-best 

is based on ranking the five methods by their accuracy 

performance. From Table 6 we observe that the CN-based 

hypotheses combination produces a consistent improvement 

in recognition accuracy. Integrating more hypotheses in 

general yielded higher accuracy.

Table 6 Recognition accuracy after combination 

Accuracy after combining n-best results  

n=2 n=3 n=4 n=5

Dr. 1 81.67 81.65 81.97 81.81 

Dr. 2 74.52 74.52 74.48 74.45 

Dr. 3 76.91 76.88 76.94 77.03 

Dr. 4 78.87 78.82 78.74 78.76 

Dr. 5 83.20 83.45 83.50 83.55 

Avg. 79.48 79.50 79.56 79.56 

To investigate the effect of the repeat number r in 

generating random subtrees on performance of stochastic 

full lookahead,  we trained PDTs with different values of r

on Dr. 3 dataset and compared the model sizes and 

recognition accuracies. From Table 7 we do not see a 

consistent tendency. Since this is not a deterministic 

algorithm, different runs of the algorithm might return 

different results. The best way is to run it a lot of times and 

get the average result. Due to the time consuming nature of 

such a procedure, this is left for a future work.

Table 7  Performance of stochastic full lookahead  

with different r

r 5 10 20 50 

Model size 877 861 879 855 

Accuracy (%) 76.60 76.63 76.35 76.57

We also compared the performance of constrained 

lookahead and traditional lookahead (TLA) methods on Dr. 

3 dataset. Table 8 gives the results. We can see that the 

constrained methods give better performance than the 

unconstrained one both in recognition accuracy and in 

model size.  

Table 8 Comparison of constrained lookahead and 

traditional lookahead method 

 Accuracy (%) Model size

TLA-1 76.51 1064 

TLA-2 76.08 1082 

CLA-1 76.76 918 

CLA-2 76.95 931 

7. CONCLUSION 

In this paper we present two new lookahead methods of 

constructing PDTs: a constrained lookahead method and a 

stochastic full lookahead method. The stochastic full 

lookahead method significantly decreases model size 

without sacrificing average recognition accuracy. 

Combining the recognition hypotheses from acoustic 

models of different PDTs through CN yields consistent 

recognition accuracy improvement. Since these methods use 

different judgments  to train PDTs, the resulting trees have 

complementary properties to some extent. The phone-state 

dependent likelihood gain threshold is effective in 

producing small PDTs without hurting accuracy, and the 

strategy of using n-best questions in PDT lookahead search 

reduces both model size and search time. 
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