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ABSTRACT

In this paper we investigate combination of neural net based classi-
ers using Dempster-Shafer Theory of Evidence. Under some as-

sumptions, combination rule resembles a product of errors rule ob-
served in human speech perception. Different combination are tested
in ASR experiments both in matched and mismatched conditions and
compared with more conventional probability combination rules. Pro-
posed techniques are particularly effective in mismatched conditions.

Index Terms— Dempster-Shafer theory, Classi er combination,
Multi-Stream ASR.

1. INTRODUCTION

Multi-stream speech recognition approaches where individual infor-
mation streams are formed by using evidence from different ele-
ments of the signal are becoming a norm in the ASR community
(e.g. multi-band [1],[2], feature combinations [3]). In this paper, we
study combinations of posterior probabilities of phonemes derived
from different input speech representations. The probabilities are
estimated by a multi-layer perceptron (MLP) trained on phoneme-
labeled data.

In literature, many papers have already addressed the problem
(e.g. [4]) considering combination rules like sum, product, maxi-
mum and minimum rules. Anyway combination has always been
considered in the framework of classical probability theory. We
study here a combination rule based on Dempster-Shafer theory of
evidence ([5]) which can be considered an extension of Bayesian
probability. Main advantage of this framework is the explicit repre-
sentation of ignorance. DS theory has already been investigated in
speech recognition (e.g. [6]) but this is probably the rst attempt to
use it for combination of information coming from different acoustic
streams. Furthermore, under some assumption, DS combination rule
is similar to what is known in the speech recognition community as
the Fletcher’s “product of errors” (see [7],[8]).

The paper is organized as follows: section 2 gives some gener-
alities on Theory of Evidence, section 3 draws a parallel between
DS combination rule and product of errors, section 4 describes how
to transform output of an MLP into a BPA, section 5 describes how
to combine BPAs coming from different MLP, and nally section 6
describes experimental results.

2. THE DEMPSTER-SHAFER THEORY OF EVIDENCE

The Dempster-Shafer (DS) Theory of Evidence (see [5]) allows rep-
resentation and combination of different measures of evidence. It

can be considered as a generalization of the Bayesian framework
and permits the characterization of uncertainty and ignorance.

Let Θ = {θ1, ..., θk} be a nite set of mutually exclusive and
exhaustive hypotheses refereed as singletons. Θ is referred as frame
of discernment. Let 2Θ be the power set of Θ i.e. the set of all
subsets of Θ. A basic probability assignment (BPA) is a function m
from 2Θ to [0, 1] such that

m : 2Θ → [0, 1],
X

A⊂Θ

m(A) = 1 and m(�) = 0 (1)

m(A) can be interpreted as the amount of belief that is assigned
exactly to A and not to any of its subsets. In probability theory,
a measure is assigned only to atomic hypothesis m(θi) while in DS
Theory it can be assigned to a set A without any further commitment
on the on the atomic hypothesis that compose A. The situation of
total ignorance is represented by m(Θ) = 1. On the other hand, if
we set m(θi) �= 0 for all θi and m(A) = 0 for all A �= θi, we
recover the probability theory.

Let ¬A be complementary set of A i.e. the set {Θ − A}. In
DS Theory, m(A) +m(¬A) < 1 (contrarily to probability theory),
which means that we can consider an amount of belief that is not
attributed to an hypothesis nor to its negation. In other words, “we
don’t need to over-commit when we are ignorant”.

The function that assigns to each subset A, the sum of all basic
probability numbers of its subset is called belief function or credibil-
ity of A:

Bel(A) =
X

B⊂A

m(B) (2)

Subset A for which m(A) > 0 are called focal elements and their
union is called core. A belief function is de ned as vacuous if it
has only Θ as focal element. A belief function is de ned as simple
support function if it has only one focal element in addition toΘ and
Bayesian if its focal elements are singleton.

In an analogous way, Plausibility of an hypothesis A is de ned
as:

P l(A) = 1−Bel(Ā) =
X

B∩A�=0

m(B) (3)

and it measures to what extent we fail to doubt in A. Another inter-
esting point in DS Theory is how two different belief functions Bel1
and Bel2 over the same frame of discernment are combined into a
single belief function. Dempster’s rule states that Bel1 and Bel2
must be combinable i.e. their cores must not be disjoint. Given m1

and m2 BPAs associated with Bel1 and Bel2 this condition can be
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expressed as
P

A∩B=�m1(A)m2B < 1. In this case m1 and m2

can be combined as:

m(�) = 0, m(θ) =

P
A∩B=θ m1(A)m2(B)

1−
P

A∩B=�m1(A)m2(B)
(4)

and m(θ) is a BPA. The belief function given by m is called orthog-
onal sum of Bel1 and Bel2 denoted as Bel1 ⊕ Bel2 (m as well is
denoted as m1 ⊕ m2 ). DS orthogonal sum is both associative and
commutative. Given two belief functions Bel1 and Bel2, if Bel1
is vacuous, then Bel1 ⊕ Bel2 = Bel2; if Bel1 is Bayesian, then
Bel1 ⊕Bel2 is also Bayesian.

Let us consider now the case of orthogonal sum between two
simple support belief functions Bel1 and Bel2 with focus A �= Θ
i.e. m1(A) = s1, m1(Θ) = 1−s1, m2(A) = s2, m2(Θ) = 1−s2.
Applying DS orthogonal sum (4), we obtain:

m(Θ) = (1− s1)(1− s2), m(A) = 1− (1− s1)(1− s2) (5)

In words, in case of simple support belief functions, the total igno-
rance is the product of ignorances of single belief. In next section,
we draw a parallel with product of errors.

3. PRODUCT OF ERRORS

Work of Fletcher ([7]) on human processing of speech suggests that
humans process speech in different frequency sub-bands indepen-
dently. Combination of processing from each sub-band is done in
such a way that total error is equal to product of errors in different
sub-bands. In other words, to recognize correctly a phoneme it is
enough to recognize it correctly in one of the available sub-bands.

Those ndings suggested as possible combination rule of clas-
si ers based on different acoustic evidence, the product of errors
(PoE). Let us denote with p1 and p2 the probability of correct recog-
nition of a phoneme for two different acoustic streams, according
to PoE, the combined probability of those classi ers should be p =
1− (1− p1)(1− p2). It is evident the analogy in between previous
expression and results from expression (5) with the difference that
in theory of evidence we should talk about “product of ignorances”
rather then “product of errors”. Anyway, as we will verify in the ex-
perimental section, combination according to PoE does not provide
results comparable to classical classi ers combination rules; on the
other hand, “product of ignorances” gives good results compared to
other rules.

4. FROM MLP OUTPUT TO BASIC PROBABILITY
ASSIGNMENT

DS theory represents an interesting alternative to classical probabil-
ity framework for combining different classi ers and it has already
been largely studied in the machine learning community (e.g. see
[9]). Main weakness of DS theory is the fact that results are strongly
sensitive on the choice of the Basic Probability Function. Thus DS
combination rule has a certain degree of heuristic depending on the
type of classi er we aims at combining.

We will focus on combination of outputs from different Neural
Networks. In [10] and [11], multiple neural nets outputs are com-
bined using DS orthogonal sum for handwriting recognition appli-
cations. The main question is how to choose an effective BPA. Each
output from the a neural net is considered as a source of information
(a belief) that induces a frame of discernment. If we denote with θi
the i − th output of the MLP, focal elements of the corresponding

BPA will be mi(θi) i.e. the belief we have in the hypothesis asso-
ciated with the i − th output, mi(¬θi) i.e. the belief we have in
the complementary of this hypothesis and mi(Θ) i.e. the ignorance
associated with this hypothesis. In [10], BPA are estimated respec-
tively according to recognition rate, error rate and rejection rate of
each Neural Net output while in [11], they are estimated according to
different kind of distances between MLP outputs and some reference
vectors.

We consider the output of a Neural Network trained in order to
estimate posterior distributions for a target class (i.e. a phoneme
posterior) [12]. Let us consider a phoneme setΘ = {θ1, ..., θk} and
a trained Neural Net that produces target posteriors {p1 = p(θ1|X),
..., pk = p(θk|X)} with

P
i pi = 1 where X is an observation

vector. First problem we have to deal with is how to transform the
probabilistic output of the MLP into a BPA. With DS formalism,
the probabilistic output can be represented by the following BPA
m(θi) = pi ∀i and m(Θ) = 0 i.e. all belief is attributed to atomic
hypotheses (phonemes) and no belief to the ignorance. To quantify
the degree of ignorance of the MLP output, a natural choice is the
use of the entropy of the output H =

Pk

i pilog(pi). Ignorance is
supposed to be total (i.e. m(Θ) = 1) when entropy of the output
achieves its maximum value Hmax =

Pk

i
1

k
log( 1

k
). Under those

considerations a possible choice for a BPA is represented by:

mi(θi) = αpi mi(Θ) = 1− αpi = 1−mi(θi) (6)

with α = (1−
H

Hmax

)γ (7)

When the entropy H is zero, ignorance mi(Θ) is equal to 1 − pi
while when entropy is maximum ignorance mi(Θ) = 1. Choice of
function (7) is heuristic; exponent factor γ is supposed to better t
ignorance estimation to entropy measure because ignorance should
may not be a linear function of the entropy. BPAs as de ned in (6)
are simple support functions and we refer to them as BPA1.

Anyway other BPAs can be de ned in which we further add in-
formation on the complementary set ¬θi. For instance we could
de ne a new BPA as:

mi(θi) = αpi mi(¬θi) = α(
X

j �=i

pj) (8)

mi(Θ) = 1−mi(θi)−mi(¬θi) (9)

In this case each MLP output is supposed to provide information on
both phoneme i and set of phonemesΘ− i. Contrarily to probability
theory, they do not sum to one because a certain amount of belief is
supposed to be assigned to all phoneme set Θ. We refer to BPAs
(8-9) as BPA2.

Finally a third set of BPA can be directly derived from orthogo-
nal sum of BPAs (6). In fact BPA from each MLP output as de ned
in (6) are combinable; applying orthogonal sum (4) (⊕imi) a new
set of BPA can be directly obtained:

m(θi) = mi(θi)
Y

j �=i

(1−mj(θj))/Z (10)

m(¬θi) = (1−mi(θi))
Y

j �=i

(1−mj(θj))/Z (11)

m(Θ) =
Y

j

(1−mj(θj))/Z (12)

Z = 1−mi(θi)(1−
Y

i�=j

(1−mj(θj)) (13)

We refer to set of BPAs (10-13) as BPA3.
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In this section, we described three different ways of associating
a basic probability assignment on a frame of discernment induced
by a MLP output. In next section we describe how to combine two
different BPAs obtained trough two different Neural Networks.

5. DS THEORY FOR CLASSIFIERS COMBINATION

Let us consider now the case in which we have two different Neu-
ral Networks and their corresponding BPA obtained in one of the
three ways described in previous section. Those BPA can now be
combined applying orthogonal sum (4). In case of simple support
functions (i.e. BPA1), we must combine BPA with only one focal
element. Given two MLP a and b and correspondent BPA ma(θi) =
sa,ma(Θ) = 1 − sa,mb(θi) = sb,mb(Θ) = 1 − sb, orthogonal
sum ma ⊕mb gives:

m(Θ) = ma(Θ)mb(Θ) = (1− sa)(1− sb) (14)

m(θi) = ma(θi)mb(θi) +ma(θi)ma(Θ) +mb(θi)ma(Θ)

= 1− (1− sa)(1− sb) (15)

Similarity of expressions (14 - 15) with product of errors rule are
quite obvious with the difference that in this case combination rule
consider product of “ignorance” instead of errors.

In case of BPA2 and BPA3, combination rule must handle as
well the set m(¬θi); orthogonal sum gives:

m(θi) = {ma(θi)mb(θi) +ma(θi)ma(Θ) +

+ mb(θi)ma(Θ)}/Z (16)

m(¬θi) = {ma(Θ)mb(¬θi) +mb(Θ)ma(¬θi)}/Z (17)

m(Θ) = {ma(Θ)mb(Θ)}/Z (18)

Z = 1−ma(¬θi)mb(θi)−mb(¬θi)ma(θi) (19)

Combination rules (14 - 15) and (16 - 19) show how to combine BPA
from two different MLP into a single BPA. Those rules can be easily
extended to more then two classi ers because they are associative.

6. EXPERIMENTS

We investigate the use of DS theory of evidence for combining out-
put of Neural Networks in data-driven feature extractions for ASR.
Results are compared with classical combination rules like product
and sum.

Data driven feature extraction methods aims at estimating di-
rectly from data, features that are used in the recognition process.
An effective and well established technique consists in estimating
phoneme posteriors using a Neural Network (see [13]). Phoneme
posteriors are further processed trough a logarithmic function and a
Karunen-Loeve Transform (KLT) before using them as features in
the classical HMM/ GMM framework.

Database we used for recognition experiments is the OGI-Numbers
95 while MLP is trained using 3 hours of hand-labeled speech from
the OGI-Stories database. Phoneme set is constituted by 29 En-
glish phonemes. Two different posterior streams are considered:
TANDEM-PLP posterior ([13]) and Multi-RASTA posterior ([14]
).

In case of TANDEM-PLP posteriors, MLP input is a vector of 9
consecutive frames of PLP features. In case of Multi-RASTA pos-
teriors, MLP input is a segment of one second critical band energies
ltered through a set of multi resolution lters. Those two streams

are supposed to capture short and long term dependencies in two dif-
ferent features set. We will consider combination of those different
streams according to DS theory.

Multi-RASTA features are inherently robust to linear distortion
of the signal [14]. On the other side, Tandem-PLP features are se-
riously affected by this distortion. To verify the effectiveness of
the combination techniques, we study performances of combination
when a rst order preemphasis lter with α = 0.95 is applied to the
test data set.
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Fig. 1. Performance of combination rule BPA2 function of the factor
γ in matched conditions.

Table 1 reports TANDEM-PLP and Multi-RASTA performances
in terms of WER in case of matched and mismatched conditions.
While Multi-RASTA features hold the performance even in mis-
matched conditions, TANDEM-PLP are seriously affected.

Matched Mismatched
TANDEM-PLP 3.7% 9.7%
Multi-RASTA 3.5% 3.5%

Table 1. WER for TANDEM-PLP and Multi-RASTA features in
matched and mismatched conditions.

In the following, we study different combination rules for the
two posterior stream. Combined posterior are converted into fea-
tures using a logarithmic transform and then a KLT transform. Clas-
sical way of combining posterior are the sum rule and the product
rule (e.g. [4],[15]). We also consider the product of errors rule, di-
rectly applied on posterior estimation and inverse entropy weighting
(IEW)[16]. In addition to those, we consider combination trough
DS theory. When DS theory of evidence is applied, posterior dis-
tributions are rst transformed into BPA using rules BPA1, BPA2
and BPA3 as described in section 4. BPA from different posterior
streams are then combined together using rules described in section
5: BPA1 is combined using rules (14 - 15) (for simple support func-
tions) while BPA2 and BPA3 are combined using rules (16 - 19).

Table 2 shows Word Error Rates for different combination tech-
niques in matched and mismatched conditions. In clean conditions
combination of posteriors gives always better results than each pos-
terior stream independently.

Out of the combination rules based on traditional probability
theory, product holds the best performance, while product of errors
gives the higher error rate. In mismatched conditions, product rule
gives same performance of the best feature stream, while sum and
product of errors give inferior results.

Let us now consider results from DS combination rules. Out
of the three proposed combination framework, the best performing
BPA2 is giving 7% improvement in matched conditions and 9% im-
provement in mismatched conditions w.r.t. product rule.
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Sum Prod PoE IEW BPA1 BPA2 BPA3
Matched 3% 2.8% 3.1 % 2.9% 2.8% 2.6 % 2.8%

Mismatched 4.1% 3.5% 4.5% 3.8% 3.5% 3.2% 3.5%

Table 2. WER for different combination rules in matched and mismatched conditions. Sum, Prod (product),PoE (product of errors), IEW
(inverse entropy weighting).

BPA1 and BPA3 performances are similar to those obtained us-
ing product rule. Combination rules BPA1 and BPA3 give very simi-
lar results indicating that merging evidence from different outputs of
the same MLP does not give any improvement in our experiments.

Many other approaches for combining MLP outputs according
to entropy measures have been considered in the past (e.g. [16],[15]).
Combination rules still are product rule or sum rule but they are
weighted according to some functions of the entropy. In our ap-
proach entropy is used to determine the amount of belief from a
given MLP output that must be discarded i.e. assigned to the ig-
norance hypothesis. DS orthogonal sum 4 in the general case cannot
be re-conducted into any of those rules.

The most questionable part is the way we transform the output
of a probabilistic classi er (i.e. a MLP) into Basic Probability As-
signment. Our choices are somehow heuristic and must be further
investigated. The use of the entropy is a natural way of representing
ignorance but there is no reason for supposing that ignorance should
be a linear function of the entropy. As solution to this problem, we
choose the function (7) with a correction factor γ. This factor has
actually an impact on the nal performance of the combination. Fig-
ure 1 plots WER in matched conditions as a function of γ for BPA2.
WER are sensitive to the value of γ even if there are some intervals
in which DS combination performs consistently better than sum or
product rules.

7. CONCLUSIONS

In this paper, we present a method for combining output from differ-
ent neural networks based on Dempster-Shafer Theory of Evidence.
Main appeal of this theory is the possibility of representing igno-
rance. Under certain assumptions (see section 4), DS combination
rule show analogies with what was found by Fletcher in his speech
perception experiments.

Three different rules for transforming MLP outputs into belief
are presented. DS combination rule is tested in recognition experi-
ments and compared with classical combination rules (sum, product
and product of errors) both in matched and mismatched conditions.
In matched conditions, all combination rules outperforms individual
feature streams. Best combination rule is BPA2 while PoE is the
worst one. On the other side, product of “ignorances” (i.e. BPA1)
shows similar results as the product rule. In mismatched conditions,
we would like to have at least a performance equal to the perfor-
mance of the best feature stream. In case of product rule and BPA1
this is achieved. BPA2 is still achieving error rate lower than the
one provided by the best feature stream meaning that it is able to
extract useful informations from both streams. Sum and PoE rules
are giving error rate higher than those achieved by the best feature
stream.
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