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ABSTRACT

Harmonic sinusoidal representations of speech have proven to be
useful in many speech processing tasks. This work focuses on the
phase spectra of the harmonics and provides a methodology to ana-
lyze and subsequently to model the statistics of the harmonic phases.
To do so, we propose the use of a Wrapped Gaussian Mixture Model
(WGMM), a model suitable for random variables that belong to cir-
cular spaces, and provide an Expectation-Maximization algorithm
for training. The WGMM is then used to construct a phase quan-
tizer. The quantizer is employed in a prototype variable rate narrow-
band VoIP sinusoidal codec that is equivalent to iLBC in terms of
PESQ-MOS, at ∼ 13 kbps.

Index Terms— speech analysis, speech coding, source coding,
phase coding, transform coding

1. INTRODUCTION

The voiced parts of the speech signal have a quasi-harmonic behav-
ior that is easily observed on the time-frequency plane. The prop-
erties and the statistical behavior of the amplitude spectra has been
well studied and used in many applications like Speech Recogni-
tion, Speaker Identification, etc. On the contrary, phase spectra are
usually disregarded, mainly because of the intrinsic difficulties as-
sociated with the accurate and robust modeling of phases. How-
ever, there are several studies that indicate the importance of phase
in speech perception [1].

Understanding and modeling the phase information present in
speech signals is a problem related to the “inverse” model techniques
that estimate the glottal air flow signal from the speech signal [2]
and to techniques which model phase using group delay spectra [3].
These techniques are deterministic in the sense that they rely on
a speech production model for justification. This paper presents
a stochastic framework to model phases that does not imply am
explicit speech production model. The framework allows efficient
quantization of the raw phase data of speech harmonics, and has
many applications, like Speech Coding for VoIP and Speech Syn-
thesis for small-footprint TTS systems.

Lately, there is a renewed interest in sinusoidal speech coding for
VoIP applications, driven by the fact that sinusoidal models are suit-
able for packet loss concealment [4] and time-scale modifications for
adaptive jitter buffer resizing. Sinusoidal (harmonic) speech codecs
have shown to have superior quality at low bit rates. These codecs
take a source/filter approach and use a phase model to reconstruct the
phase of the harmonic excitation, like in STC (Sinusoidal Transform
Codec) and in MBE (MultiBand Excitation) codecs [5]. In [6], the

voiced harmonics are constructed using a Rosenberg glottal pulse
model. Another idea is to use all-pass filters to correct the phase
response of the minimum phase AR spectral envelope [7]. These
model-based approaches work well for low bit-rates (below 4 kbps),
but many researchers argue that high-quality sinusoidal speech cod-
ing requires the quantization of the phases.

In [8], the phase residual, the difference between the phase of
the current frame and it’s prediction from the previous frame is quan-
tized. Vector quantization of phases was proposed in [9] for the
quantization of the harmonic phases of the SEW (Slowly Evolving
Waveform) in the context of WI (Waveform Interpolation) coders.
However, VQ-based phase quantizers cannot operate at increased
bit-rates and, inevitably, the quality of speech is limited. A GMM-
based phase quantization algorithm capable of operating at high rates
was provided in [4], but the quantizer restricts the GMM to (0, 2π].
This does not take into account the modulo-2π behavior of the phase
data. Phase quantization has also found applications in concantena-
tive sinusoidal Text-To-Speech synthesis. The TTS database in such
systems is rather large and small-footprint implementations suitable
for low-end terminals requires efficient reconstruction of the har-
monic phases. In [10], phase is encoded with 7 bits/harmonic.

In this paper, we decompose the harmonic excitation phases in
two terms, a linear phase term and a dispersion phase term. The
stochastic behavior of the dispersion phases is well modeled using
circular (or directional) statistics [11]; pdfs defined on the surface
of the n-Torus manifold which is the extension of the unit circle
to multiple dimensions (modulo-2π spaces). We propose to model
the dispersion phases using the so-called Wrapped Gaussian Mix-
ture Models (WGMM) which are able to model a wide range of
variables that exhibit a modulo-2π behavior. However, only a few
recent publications utilize wrapped models to model circular data.
In [12], wrapped Hidden Markov Models (HMM) are used to track
the trajectories of sound sources inside a room. In [13], wrapped
(Normal, Cauchy) mixture models are used to study time series with
linear and circular variables.

An Expectation-Maximization (EM) algorithm for wrapped mul-
tivariate Gaussians and an extension to HMM is presented in [12]
for the case of Gaussian components with diagonal covariance ma-
trices. However, the EM algorithm provided in [12] estimates the
parameters by performing the EM steps one dimension at a time.
We show that this restriction is not necessary and an EM algorithm
for WGMM with diagonal covariance matrices is given in this pa-
per. The WGMM captures the pdf of the dispersion phases, which is
used to construct a phase quantizer by employing ideas from GMM-
based quantization [14]. The WGMM-based quantizer is then used
in a phase quantization scheme that encodes the variable-dimension
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phase vectors. The proposed method used in a prototype sinusoidal
speech codec and evaluated in terms of PESQ-MOS [15] where it
is shown that a score of 3.87 can be achieved with an average rate
of ∼13 kbps for all speech parameters. The extension to wideband
signals is not discussed in this paper, but the interested reader could
be referred to [16].

The outline of this paper is as following. In Section 2 we present
the harmonic model and a method compute the linear phase term.
Section 3 presents the WGMM and the corresponding EM algorithm.
The construction of a WGMM-based quantizer is presented in Sec-
tion 4. Finally, Section 5 evaluates the application of this quantizer
to narrowband speech coding.

2. HARMONIC MODEL AND PHASE DECOMPOSITION

Harmonic representation is a high quality parametric model used for
analysis/synthesis of the speech signal [5]. Signal x(n) is typically
analyzed in short intervals called frames, where it is assumed to be
stationary. Within each frame, the signal is represented as a weighted
sum of harmonically related sinusoids:

x̂(n) =

K�
k=1

Ak cos(kω0n+ φk), (1)

where ω0 is the fundamental frequency (in radians),K is the number
of the harmonics, Ak and φk are the amplitude and the phase of the
k-th harmonic, and n is the time index. The amplitudes and the
phases can be obtained using least squares methods [17].

Harmonic amplitudes Ak maybe well represented using a min-
imum phase RCC (Real Cepstrum Coefficients) spectral envelope
with 20 dimensions. The cepstral envelope fits the log-spectra log(Ak)
at the Mel-scale by solving a regularized least squares problem [17].

LetHs(ω) be the frequency response of the RCC envelope. The
phases φk are decomposed to a minimum phase term ∠Hs(kω0), a
linear phase term kω0τ and a dispersion term ψk:

φk = kω0τ + ∠Hs(kω0) + ψk (2)

The phases ψk + kω0τ correspond to the phases of an excitation
signal since the subtraction of the minimum phase term corresponds
to inverse filtering with the spectral envelope H(ω). The excitation
signal e(n) can be reconstructed according to the formula:

e(n) =

K�
k=1

cos(kωon+ kω0τ + ψk). (3)

The linear phase term kω0τ corresponds to the translation of the ex-
citation with respect to a reference point inside the pitch period. As
a reference point, we used the peak of the excitation e(n) within a
single pitch period. The peak-picking is made to a uniformly sam-
pled version of the excitation e(n), using 128 samples (7 bits). We
found that this procedure provided robust reference points within the
glottal cycle. The dispersion phases ψk, k = 1, ...,K have a distri-
bution that exhibits structure and can be modeled using WGMM. A
similar observation was also used in [4] for phase quantization.

3. CIRCULAR STATISTICS AND WRAPPED GMM

Let �ψ be the vector that holds the phases ψk, k = 1, ...,K . Vector �ψ
is distributed on the surface of the n-Torus T

K = R
K/2πZ

K . The
T

1 n-Torus is the unit circle, while T
K = T

1 × T
1 × . . . × T

1 is
the K times product of T

1. The corresponding statistics are called

circular (or directional) statistics and the random variables �ψ are
called circular (or directional) random variables [11].

The statistics of a scalar circular random variable can be cap-
tured either by a pdf explicitly defined on the unit circle, like the
Von-Mises distribution, or by wrapping the pdf of a linear random
variable to the circumference of the unit circle [11]. The pdf of the
linear Gaussian distribution is:

N(θ;μ, σ2) =
1√

2πσ2
exp

�
− (θ − μ)2

2σ2

�
. (4)

For notational simplicity we will henceforth assume that all circu-
lar random variables are confined in (0, 2π]. The pdf of the scalar
wrapped Gaussian distribution is given by [11] (pg. 55):

Nw(θ;μ, σ2) =

∞�
w=−∞

N(θ − w2π;μ, σ2), (5)

where μw and σ2
w is the mean and the variance of the wrapped Gaus-

sian. The wrapped-Gaussian pdf can be approximated by the linear
Gaussian pdf at small variances σ2

w ≤ 1 and by the uniform distri-
bution at large variances σ2

w ≥ 2π. The wrapped Gaussian pdf is
constructed by infinite wrappings of the linear Gaussian pdf in the
interval (0, 2π]. In practice, though, a summation over ±2 tilings
provides a sufficient approximation even for large variances σ2

w.
A pdf for the multivariate wrapped Gaussian distribution can be

obtained as a product of scalar pdfs:

Nw(�ψ; �μ, �σ2) =

K�
k=1

Nw(�ψ(k); �μ(k), �σ2(k)). (6)

The pdf of the Wrapped Gaussian Mixture Model (WGMM) can
then be defined as:

p(�ψ) =

M�
m=1

αmNw(�ψ; �μm, �σ
2
m), (7)

where M is the number of Gaussian components and αm, �μm and
�σ2

m are the prior probability, the mean and the variances of the m-th
wrapped Gaussian component. The pdf assumes that ψk are inde-
pendent random variables. The pdf of a WGMM with full covariance
matrices can also be captured by a WGMM with diagonal covariance
matrices using more Gaussian components. Furthermore, it leads to
algorithms with tractable complexity.

Expectation-Maximization Algorithm
The derivation of the algorithm is omitted due to the lack of

space. This section presents the equations that perform a full itera-

tion of the EM algorithm. Let �ψn, n = 1, ..., N be N data vectors.
We will define some accessory variables that hold the informa-

tion related to the expectation step:

δk,m,n,w = N(�ψn(k)− w2π; �μm(k), �σ2
m(k)) (8)

βk,m,n =
�
w∈Z

δk,m,n,w (9)

β
(μ)
k,m,n =

�
w∈Z

δk,m,n,w

�
�θn(k)− w2π

�
(10)

β
(σ2)
k,m,n =

�
w∈Z

δk,m,n,w

�
�θn(k)− �μm(k)− w2π

�2

(11)

βm,n = αm

K�
k=1

βk,m,n (12)

(13)
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We will define some more accessory variables:

ωm =

N�
n=1

βm,n

M�
m′=1

βm′,n

(14)

The update equations can then be written as:

αm ← 1

N
ωm (15)

�μm(k)← 1

ωm

N�
n=1

βm,n

βk,m,n
β

(μ)
k,m,n (16)

σ2
m(k)← 1

ωm

N�
n=1

βm,n

βk,m,n
β

(σ2)
k,m,n (17)

In practice the summation in equations (11),(10),(11) need not be
made over the whole Z; only ±2 tilings are adequate.

4. WGMM-BASED QUANTIZATION

The proposed scheme encodes data vector �ψ according to the pdf

of each of the multivariate wrapped Gaussians. The data �ψ is quan-
tized with M wrapped multivariate Gaussian coders and the “best”
quantization is transmitted through the channel along with the corre-
sponding indices. The resulting scheme is a straightforward exten-
sion of the GMM-based quantization scheme [14] to WGMM. The
design of a wrapped multivariate Gaussian quantizer is the subject
of the rest of the section.

Initially, we define a distortion measure suitable for circular ran-
dom variables. We define the Wrapped-Square-Error (WSE) as:

d(ψ, ψ̂) = min
w∈Z

��
ψ − ψ̂ − w2π

�2
�
. (18)

If both ψ and ψ̂ are confined to their principal values in (0, 2π], then
only ±1 wrappings are enough in equation (18). The extension of
WSE to vectors is straight-forward:

d(�ψ, �̂ψ) =

K�
k=1

d(�ψ(k), �̂ψ(k)). (19)

Next, we construct a quantizer for scalar circular random vari-
ables distributed according to Nw(θ;μ, σ2). We construct a circu-
lar codebook by wrapping the codepoints of the N(0, σ2) Gaussian
codebook around the circumference of the unit circle. This solution
works quite well for low variances σ2 ≤ 1 because the overlapping
between the tilled Gaussian components is low but it becomes less
accurate in higher variances. Therefore, we constrain the maximum
overlapping by restricting the variances to (0, 2π] during the training
of the WGMM.

Finally, we provide a greedy bit-allocation algorithm. Let R
be the rate of the WGMM-based quantizer and Nm =

�
αm2R

�
be the number of quantization levels is assigned to each of the M
components of the WGMM. Within each Gaussian component, the
Nm quantization levels are allocated with a greedy algorithm that
minimizes the expected component distortion Dm:

Dm =

K�
k=1

D(Nm,k, σ
2
m(k)), (20)

whereD(Nm,k, σ
2
m(k)) is the expected WSE when the k-th variable

of the m-th wrapped Gaussian component is encoded with Nm,k

quantization levels. The minimization is made subject to the rate
constrain:

K	
k=1

Nm,k ≤ Nm.

When the variances σ2
m(k) ≤ 0.5, the wrapped univariate Gaus-

sian is well approximated by a linear Gaussian and the well-known
distortion-rate formula for linear Gaussians can be used instead [18]
(pg. 228):

D(N,σ2) =

√
3π

2
σ2N−2. (21)

For higher variances, σ2
m(k) > 0.5, we use linear interpolation of

tabulated distortions, sampled for a wide range of quantization levels
and variances. The distortions were computed using 100.000 sam-
ples of a wrapped N(0, σ2) and evaluated with the WSE, for quan-
tization levels l = 1, 2, . . . , 26 and for densely sampled variances
σ2 = {0.5, 0.51, 0.52, . . . , 2π}.

5. PHASE QUANTIZATION FOR NARROWBAND SPEECH

The presented WGMM-based quantization algorithm was used to
quantize the dispersion phases ψk of the narrowband speech har-
monics below 3700 Hz. Only the phases of voiced frames were
quantized, while the phases of unvoiced frames were randomly set.
A practical phase quantization scheme has to quantize variable di-
mension phase vectors. We address this problem by classifying pitch
values in 7 classes (continuous intervals) in order to reduce the vari-
ability of the dimensions of the phase vectors within each class.
Then we use a split-band approach and separate the harmonics to
low-frequency harmonics and high-frequency harmonics in order to
provide a higher bit-rate to the perceptually important low-frequency
harmonics. For each pitch class, a fixed number of low-frequency
harmonics are vector quantized using the corresponding low-frequency
WGMM. The rest of the harmonics are quantized with a high-frequency
WGMM that is constructed on-the-fly for each frame to fit the num-
ber of dimensions of the high-frequency harmonics.

Table 1 shows the 7 pitch classes and the corresponding fre-
quency intervals. A WGMM is trained for the low-frequency har-
monics of each class. For classes Q1 and Q2, another WGMM is
trained for a subset of the higher frequency harmonics (25-th har-
monic and above). For every class except Q3 and Q7, the number
of harmonics modeled by a WGMM is equal to the minimum size
of the phase vectors of that class. For example, class Q1 has phase
vectors with sizes ranging between 38 and 52 dimensions, therefore
24+14=38 harmonics are modeled by a WGMM. For class Q3, only
the first 24 harmonics are modeled by the low-frequency WGMM.
Class Q7 is relatively rare in our training set and we chose to quan-
tize it using a WGMM obtained by truncating the dimensions of the
low-frequency WGMM of Q6 to the desired number of harmonics.

The construction of the high-frequency WGMM is made as fol-
lows: for pitch classes Q1 and Q2, the WGMM trained for the phases
above the 24-th harmonic is expanded to the total number of high-
frequency harmonics. This is made by replicating the means and the
variances of the highest harmonic which is modeled by a WGMM of
the specific pitch class. The same strategy is adopted in classes Q3 to
Q6 in order to construct the high-frequency WGMM: the means and
the variances of the highest harmonics of the low-frequency WGMM
are replicated to fit the number of high-frequency harmonics.

The expansion/truncation strategy adopted in this phase quanti-
zation scheme is a practical choice dictated by the problem of having
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Pitch Class Pitch Range Low-Freq. High-Freq.
WGMM dims. WGMM dims.

Q1 70-95 Hz 24 14+
Q2 95-115 Hz 24 8+
Q3 115-142 Hz 24 0+
Q4 142-176 Hz 21 0+
Q5 176-217 Hz 17 0+
Q6 217-250 Hz 14 0+
Q7 250-350 Hz 14- 0

Table 1. Pitch Classes for WGMM-based Vector Quantization of
phases. The “+” symbol refers to the variable number of expanded
dimensions of the high-frequency WGMM. The “-” symbol refers
to the variable number of reduced dimensions of the low-frequency
WGMM of class Q6.

variable dimension vector quantization. However, the choices were
not made totaly in blind. Some motivation was provided by the fol-
lowing observations: first, the high-frequency phases above 3 kHz
have similar statistics, second, the ear is not sensitive to phase dis-
tortion in higher frequencies, third, the phases of Q7 have similar
statistics with the phases of Q6.

The proposed phase quantization method was evaluated in the
context of variable-rate narrowband speech coding. The speech sig-
nal was analyzed/synthesized using 20 ms frames with a step of
10 ms (100 frames/sec) using Hanning window. The frames were
classified as voiced, transitional or unvoiced. All parameters were
quantized. A 20-th order RCC spectral envelope was fitted to the
harmonics according to Section 2 and quantized using GMM-based
quantization [14]. Unvoiced frames were reconstructed using the
RCC envelope, the energy and random phases. Transitional and
voiced frames were reconstructed using the RCC envelope, the lin-
ear phase term τ , the pitch, the energy and the dispersion phases

ψ̂(k). Pitch was quantized with 8 bits, frame energy with 8 bits, the
linear phase term τ was quantized with 7 bits, and the voicing con-
dition with 3 bits. The RCC parameters were encoded with 50 bits
for transitional frames and 60 bits for unvoiced and voiced frames.
Two different cases were examined: HMCa with 70 bits for the
low-frequency WGMM and 30 bits for the high-frequency WGMM,
and HMCb with 60 bits for the low-frequency WGMM and 20 bits
for the high-frequency WGMM. HMC stands for Harmonic Model
Codec. Codec HMCa requires an average of 14.2 kbps and codec
HMCb an average of 12.9 kbps.

The evaluation was made using PESQ-MOS [15] computed with
a test-set of 64 male and 64 female utterances. As a baseline, we
also examined the analysis/synthesis system (unquantized parame-
ters and amplitudes sampled from the RCC spectral envelope) (AS-
RCC) and the iLBC [19] codec (iLBC) at the 20 ms mode (15.2 kbps).
The results are shown in Figure 1. We can observe that the 12.9 kbps
HMCb codec is more-or-less equivalent to iLBC in terms of PESQ-
MOS score. This result is also supported by informal subjective lis-
tenings. In addition, HMCb has the advantage of having a paramet-
ric form suitable for packet loss concealment in VoIP and for small
footprint TTS systems.

6. CONCLUSION

A novel framework for stochastic modeling and quantization of har-
monic phases was presented and evaluated in the context of sinu-
soidal speech coding. The statistics of phases are captured with a
model suitable for variables with modulo-2π behavior. The model

AS RCC iLBC HMCa HMCb
3.65
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Fig. 1. PESQ-MOS evaluation (mean and 95% confidence interval)
of the HMC codec, iLBC and the analysis/synthesis system.

is used to construct a high-rate quantizer for harmonic phases. The
potential of WGMM in phase modeling is not limited to quantiza-
tion. Using WGMM, phase information may complement magni-
tude information in a number of applications like Speaker Recogni-
tion, generative models for TTS synthesis, detection of pathological
speech, and others.
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