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ABSTRACT

In this paper, we present a scalable entropy-constrained vector quan-
tizer based on Gaussian mixture models (GMMs), lattice quantiza-
tion, and arithmetic coding. We assume that the source has a proba-
bility density function of a GMM. The scheme is based on a mixture
component classi er, the Karhunen Lòeve transform of the compo-
nent, followed by a lattice quantization. The scalar elements of the
quantized vector are entropy coded using a specially designed arith-
metic coder. The proposed scheme has a computational complexity
that is independent of rate, and quadratic with respect to vector di-
mension. The design is exible and allows for adjusting the desired
target rate on-the- y. We evaluated the performance of the proposed
scheme on speech-derived source vectors. It was demonstrated that
the proposed scheme outperforms a xed-rate GMM based vector
quantizer, and performs closely to the theoretical optimum.

Index Terms— Entropy constrained vector quantizer (ECVQ),
lattice, Gaussian mixture model (GMM), arithmetic coding

1. INTRODUCTION

In this work, we consider a practical design of entropy-constrained
vector quantizer (ECVQ) using Gaussian mixture models (GMMs),
lattice quantization, and arithmetic coding. Existing design and
application of ECVQ have been limited to low-rates and low-
dimensional vector quantizers (VQ), e.g. [1], due the exponentially
increasing computational complexity and memory requirement with
rate and dimensionality.

For a high-rate, the optimal quantization point density for an
ECVQ is uniform [2]. This well-known result motivates a coding
structure consisting of lattice quantization [3,4] followed by entropy
coding using, e.g., an arithmetic coder. Designing a practical entropy
code for a high-dimensional lattice quantizer is however a challeng-
ing problem. The traditional approach based on ordering the code
vectors and keeping track of their corresponding cumulative mass
function (CMF) becomes unmanageable for high vector dimensions.

Here we propose an ECVQ scheme based on a parametric de-
scription of the source probability density function (PDF) provided
by a Gaussian mixture model (GMM). The CMF of the code vectors
necessary for the entropy code is computed on-the- y. Our ECVQ
design has a computational complexity that is constant with respect
to rate and quadratic with respect to vector dimensionality. Hence,
the proposed scheme allows for variable rate vector quantization in
rates and dimensions that were not possible in the past.

GMM has been successfully applied to quantization, e.g., [5–8],
for xed-rate vector quantization. Potential approaches for GMM
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Fig. 1. Schematic diagram of the proposed encoder.

based variable-rate VQ have been discussed in the unpublished
works of [9, 10]. In this paper, we propose a practical GMM based
ECVQ scheme that allows for a straightforward implementation. We
show that the proposed scheme achieves near optimal performance
with a low computational complexity.

2. PRELIMINARIES

Let x = [x1, . . . , xK ]T denote a K-dimensional source vec-
tor drawn from a sequence of I.I.D. random vectors, and x̂ =
[x̂1, . . . , x̂K ]T denote the corresponding vector after quantization.
Let f(x) denote the probability density function (PDF) of x, and
p(x̂) denote the probability mass function (PMF) of x̂. The quan-
tized vectors are entropy coded and the average rate of the generated
bit stream is denoted by Ĥ ,

Ĥ =
∑
x̂

p(x̂)�(x̂), (1)

where �(x̂) denotes the codeword length of x̂. The optimal en-
tropy code has an average rate approaching the entropy of x̂, denoted
Hlower,

Hlower = −
∑
x̂

p(x̂) log2 p(x̂). (2)

The distortion measure we considered in this paper is the mean
square error (MSE) distortion measure, denoted D,

D =
1

K

∫
f(x)||x − x̂||2dx. (3)

The optimal entropy-constrained vector quantizer has a distribu-
tion of quantization points that minimizes D, under the constraint
that Hlower equals a desired target rate R. The optimal quantization
point density then ful lls the extended criterion

η = D + λ (Hlower −R) , (4)
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where λ is the Lagrange multiplier for the entropy constraint.
The optimization problem can be solved under a high-rate as-

sumption, which implies that the data PDF is considered uniform
within the boundary of a quantization cell. The optimal quantization
point density is shown to be a constant [2]. Hence, uniform quanti-
zation points are optimal if the point indices are subsequently coded
using an entropy code. This well-known result forms the theoretical
basis for using a lattice structured codebook in an ECVQ.

Lattice quantization is an attractive approach for high-
dimensional vector quantization due to the low complexity encoding
and the minimum memory requirement for the codebook storage.
However, designing a practical entropy code for a lattice quantizer
has been a challenging problem. The goal of this work is to design a
practical low-complexity vector quantizer and an entropy code that
perform closely to the theoretically optimal system.

Our ECVQ design is based on the assumption that f(x) is mod-
eled by a GMM with M mixture components,

f(x) =
M∑

m=1

ρmfm(x), (5)

where m denotes the component index, ρ denote the mixture
weights, and fm(x) are the component Gaussian PDFs with means
μm and covariance matrices Cm.

Let Cm = VmΣ2
mVT

m be the eigenvalue decomposition, where
Σ2

m = diag[σ2
1 , . . . , σ2

K ] are the eigenvalues of Cm. VT
m is a decor-

relating transform, also known as the Karhunen Lòeve transform
(KLT), of the mth mixture component.

3. QUANTIZER DESIGN

The proposed scheme consists of a mixture component classi er and
per-component quantizers. The quantization is a two step procedure:
the input vector x is rst classi ed into one mixture component with
index m̃. Next, x is quantized to x̂ using the m̃th per-component
quantizer. Both the component index m̃ and the quantized vector
x̂ are to be entropy coded using an arithmetic coder. A schematic
diagram of the proposed scheme is shown in Fig. 1.

The index of the mixture component, m̃, to which the data vector
x belongs to, can be determined using the maximum a posteriori
(MAP) classi er,

m̃ = arg max
m

p(m|x) = arg max
m

ρmfm(x). (6)

The MAP classi er determines which per-component quantizer to
be used for the given x. We will show in Section 4 that using the
MAP classi er gives a theoretical performance that is close to the
optimum.

The optimal uniform point density motivates usage of lattice
structured codebooks in the per-component quantizers. To simplify
the design of the arithmetic coder, we transform x by subtracting the
mean, and applying the KLT of the m̃th mixture component,

y = V
T
m̃(x− μm̃). (7)

The resulting vector y is a vector of zero-mean and independent
Gaussian scalar variables.

In the transformed domain, a lattice structured component code-
book, Λ, is generated through a scaled generating matrix G, Λ =
{c GT u : u ∈ Z

k}, where c is a scaling factor, and G is the gener-
ating matrix, e.g., [4]. The theoretical result from high-rate suggests

that c is a constant for a given R, and the same c applies for all com-
ponent codebooks. Consequently, the same lattice quantizer applies
for all mixture components after transformation.

The transformed variable y is rst quantized to the closest code
vector in the lattice codebook, ŷ = c GT û, for a particular û. Fi-
nally, ŷ is entropy coded using an arithmetic code together with the
component index m̃. Details regarding the encoding and decoding
of the arithmetic code are given in section 5.1.

4. THEORETICAL ANALYSIS

4.1. Distortion analysis

Using a lattice structured codebook, all quantization cells (except
those located on the classi cation boundary) have the same lattice
cell shape and volume. Under a high-rate assumption, e.g., [11], D

is approximated by

D ≈ 1

K
vol(x̂)−

K+2

K

∫
S(x̂)

||x− x̂||2dx·g(c)−
2
K = CK ·g(c)−

2
K, (8)

where S(x̂) denotes the quantization cell for a code vector x̂, vol(x̂)
denotes the volume of S(x̂), CK is the normalized moment of in-
ertia of S(x̂), and the quantization point density, denoted g(c), is a
function of the lattice scaling factor c,

g(c) = vol(x̂)−1 = |cG|−1
. (9)

We note that contributions from quantization cells located on the
classi cation boundaries have been neglected in the analysis above.

4.2. Rate analysis

For a given x̂, the component index m̃ is rst entropy coded with
average codeword length − log2 ρm̃. The quantized vector x̂ is then
entropy coded using the m̃th mixture component with average code-
word length − log2 pm̃(x̂). The resulting average rate is then

Ĥ = −
∑
x̂

p(x̂)(log2 ρm̃ + log2 pm̃(x̂)). (10)

Under a high-rate assumption, e.g., [11], Ĥ can be approximated by

Ĥ ≈ −
∫

f(x) log2 ρm̃fm̃(x)dx + log2 g(c). (11)

We note that the rate is lower bounded by the entropy of x̂,

Ĥ ≥ −
∫

f(x) log2 f(x)dx + log2 g(c) ≈ Hlower. (12)

Since ρm̃fm̃(x) ≥ ρmfm(x) for all m, the rate is further upper
bounded by

Ĥ ≤ −
∫ M∑

m=1

ρmfm(x) log2 ρmfm(x)dx + log2 g(c). (13)

The theoretical rate of the proposed scheme lies between the
two bounds. The maximum performance loss in theory, denoted by
Hdiff, can be determined by the difference between the bounds. By
rearranging the terms, Hdiff can be written as

Hdiff = −
∫ M∑

m=1

ρmfm(x) log2

ρmfm(x)

f(x)
dx

= HM −
M∑

m=1

ρmh(fm||f), (14)
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where HM = −∑M

m=1 ρm log2 ρm is the entropy of the component
index, and h(fm||f) denotes the Kullback-Leibler distance between
the mth component PDF and the mixture PDF.

The maximum Hdiff occurs when all mixture components have
the same PDF, then h(fm||f) equals zero and maxHdiff = HM .
Hdiff decreases with increased separation of the GMM mixture com-
ponents. If the mixture components are well-separated, such that the
Bayesian classi cation error of the MAP classi er is neglectable,
then h(fm||f) approaches − log2 ρm and Hdiff approaches zero. In
this case, the proposed scheme approaches the theoretically optimal
performance.

4.3. Quantizer optimization

One advantage of the proposed scheme is the exibility of changing
the desired target rate R on-the- y. This can be done by modifying
the lattice scaling factor, c, to obtain different rate-distortion oper-
ating points. This allows for quick and seamless adaptation to, e.g.,
varying communication channel conditions.

Setting the rate Ĥ to equal R, we get

c =
(
|G|2R+

∫
f(x) log2 ρm̃fm̃(x)dx

)− 1
K

. (15)

The integral term in (15) can be solved through numerical integra-
tion. Fortunately, the integration term is independent of quantizer
rate, and can be evaluated off-line once the GMM is given.

5. IMPLEMENTATION

In this section, we discuss implementational aspects of the proposed
scheme, and in particular the entropy coding. For ease of presenta-
tion, we present the coding procedure for the Z lattice only, and the
scheme can be generalized to use an arbitrary lattice [12].

5.1. Arithmetic coding

The component index m̃ and the quantized vector ŷ are the elements
to be entropy coded. In this work, we design a arithmetic coder for
this purpose. Our classi ed scheme simpli es the design of a prac-
tical arithmetic coder, even for a high dimensional vector quantizer.
After classi cation and the KLT, y = [y1, . . . , yK ] is a vector of in-
dependent Gaussian scalar variables. Instead of encoding the index
of the quantized vector, we can, with almost no loss in performance,
encode a sequence of scalar indices consisting of the component in-
dex and the scalar indices of quantized vector, [m̃, ŷ1, . . . , ŷK ]. The
component index is coded according to the mixture weights, because
the signal model (GMM) assumes that the component generation is
independent of the subsequent generation of a vector from that com-
ponent. In the following sections, only arithmetic coding of quan-
tized vectors is discussed.

To simplify the following analysis, we further normalize y to
create unit-variance Gaussian components,

y
′ = Σ

−1
m y, (16)

and the quantized vector is scaled similarly,

ŷ
′ = c Σ

−1
m G

T
û. (17)

5.1.1. Encoding

The Z-lattice has the generating matrix G = I, where I denotes the
identity matrix. While a Z-lattice based quantizer loses the space-

lling advantage of the optimal vector quantizer due to the sub-
optimal lattice cell shape, it allows for simple implementation of the
arithmetic coder.

The scalar elements of ŷ′ are encoded sequentially, and the en-
coding of the kth element is described here. The kth scalar element,
ŷ′k, is located on a grid with points at integer multiples of Δk , where

Δk =
c

σk

. (18)

The decision interval for the arithmetic code is then determined by
the CDF of y′k evaluated at ŷ′k − 1

2
Δk and ŷ′k + 1

2
Δk.

Due to the normalization (16), y′k is Gaussianly distributed with
zero-mean and unit-variance for all k. Therefore, the same CDF,
Φ(·), applies for all dimensions,

Φ(y′k) =

∫ y′

k

−∞

1√
2π

e−
1
2

z2

dz =
1

2
erf(2−

1
2 y
′
k) +

1

2
, (19)

where erf(·) is the error function. Thus, the interval Φ(ŷ′k − 1
2
Δk)

to Φ(ŷ′k + 1
2
Δk) is used in the arithmetic encoder.

5.1.2. Decoding

For decoding of dimension k, the Φ(·) function needs to be inverted
to map a point within the decision boundary back to ŷ′k. Φ(·) is
a strictly increasing function and an inverse exists. The output of
Φ−1(·) is rounded to the nearest grid point located on the grid given
by (18) to obtain ŷ′k.

5.2. Lattice truncation

The PMF of each code-vector must be greater than a minimum al-
lowed probability to allow for practical implementation on a nite-
precision computer. If a 31 bits integer is used, this threshold is
δ = 2−29 [13]. For the kth dimension, we require

1

2
(Φ(ŷ′k +

1

2
Δk)−Φ(ŷ′k − 1

2
Δk)) > δ, (20)

for all ŷ′k. The additional 1
2

is due to the rounding of the inverse Φ
function in the decoder.

Assuming no numerical error in evaluations of Φ and its inverse,
the boundaries for truncation of ŷ′k can be solved to

−
√

log
Δ2

k

8δ2π
+

1

2
Δk ≤ ŷ

′
k ≤

√
log

Δ2
k

8δ2π
− 1

2
Δk. (21)

If Φ and its inverse are implemented numerically, e.g., through a
table lookup, the truncation bound should be adjusted such that (20)
is ful lled for all ŷ′k.

6. EXPERIMENTS

In this section, we describe the experimental setup for evaluation
of the proposed coding scheme. The experiments were performed
in the Matlab environment. The built-in function for erf(·) and its
inverse were used in our implementation.

The source vectors consist of ten-dimensional line spectral fre-
quency (LSF) vectors, extracted from the TIMIT speech database
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Fig. 2. MSE distortion as a function of rate for the LSF source.
The solid line represents the high-rate predicted performance (11, 8)
of the proposed scheme, and the dashed line the theoretical optimal
performance (12, 8). The squares represent the actual performance
of the proposed scheme, and pluses represent the reference system.

using the Adaptive Multi-Rate (AMR) speech coder [14]. The
speech signals were downsampled to 8kHz, and unquantized LSF
vectors were extracted from the AMR encoder. The complete TIMIT
database were used in the experiments. The training set consists
of 711867 LSF vectors and the evaluation set consists of 260129
LSF vectors. A GMM with M = 16 mixture components with full
covariance matrices was optimized over the training set using the
expectation-maximization (EM) algorithm [15].

We considered the xed-rate GMM-VQ of [8], adapted to used
the MSE measure, as the reference system. For a fair comparison,
the same GMM was used for both the proposed system and the ref-
erence system. We evaluated the MSE distortion of quantizers with
rates ranging from 20 to 40 bits per vector over the evaluation set.

7. RESULTS AND DISCUSSIONS

Fig. 2 shows the evaluated MSE distortions as functions of rate.
Both the experimental results and theoretical predictions are plotted
in the gure. The high-rate predicted rate (11) is about 0.3 bit per
vector higher than the theoretically optimal rate (12). The actual per-
formance of the proposed scheme is near the theoretical prediction,
particularly for rates above 35 bits. We conclude that the proposed
quantization scheme achieves near optimal performance at rates use-
ful for practical coders.

Compared to the xed-rate GMM-VQ system, the proposed
scheme performs consistently better. The reduction in distortion for
a similar rate is signi cant, particularly for high rate. For a rate
around 30 bits, the proposed scheme has an MSE that is one dB
lower below the reference scheme.

In our experiments, we observed that the actual rates (1) are of-
ten higher than the theoretically predicted rates (11), and exceed the
entropy constraint R. The difference is larger for low rates and de-
creases with increased rate. Interestingly, this mismatch is smaller
for GMMs with less number of components trained over the same

training data. This behavior is due to that a LSF-GMM is more likely
to contain vanishing dimensions (with near zero eigenvalues) when
the number of mixture components increases. When an eigenvalue
is small compared to the quantization step size, the assumption of
high-rate is no longer valid, and a mismatch between the theoretical
and practical rates appears. Therefore, in a practical application, Eq.
(15) needs to be modi ed by locally varying c to compensate this
mismatch.

The computational complexity of the proposed scheme is now
discussed. Compared to the codebook based scheme [1], our method
has a signi cantly lower complexity. The arithmetic coding based on
a sequence of scalar elements has a complexity of order O(K), lin-
ear with respect to dimensionality. Using the Z lattice, complexity of
the quantization step is also of order O(K). The classi cation and
transformation steps are more complex, and are of order O(K2) for a
GMM with full covariance matrices. If a diagonal-covariance-matrix
based GMM is used, this complexity is reduced to O(K). The over-
all computational complexity of the proposed scheme is therefore no
more than order O(K2), quadratic with respect to dimensionality.
Note that the overall complexity is independent of rate.
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