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ABSTRACT

This paper proposes a vector quantization (VQ) method 

based on composite permutation coding for transform audio 

coding. VQ is widely used for audio data compression. It 

requires mean square error computation or a similar metric 

for finding the nearest neighbor in the codebook, which 

generally incurs a lot of operations. To reduce such 

operations, we focus on the permutation representation and 

easy indexing of vectors in the codebook. The proposal 

consists of constrained composite permutation codes, which 

are distinguished by the number of components quantized 

into each quantization level. This scheme makes the output 

bit stream take the same form as a parallel array of scalar 

quantization (SQ). Simulation results show that the proposal 

almost matches the performance of VQ at 2 bit/scalar bit-

rates with lower computational complexity. Its structure 

yields the efficient representation of tones that are important 

for auditory perception.  

Index Terms— Permutation codes, Vector quantization, 

Transform coding, Speech coding, Audio coding 

1. INTRODUCTION 

Internet Protocol (IP) telephony is a technique that 

transmits speech/audio signals between all platforms 

connected via an IP network. It makes replacement of the 

codec easy, and the codec design can be flexible. However, 

at the same time, complexity of codecs becomes important 

especially for low-power devices. 

Broadband channels of IP networks also make it 

possible to consider higher rate and higher quality audio 

codecs than conventional speech codecs such as G.711 [1] 

and G.729A [2]. For instance, G.722.1 [3] is a coding for 7 

kHz bandwidth audio signals at 24 kbps or 32 kbps. To 

represent not only speech but also music and ambient 

sounds, many audio coders [3]-[5] are based on transform 

coding instead of CELP coding [2][6]. We consider the 

basic transform coding algorithm widely used, that is, 

1) Transform the input signal to a spectrum coefficient 

vector, e.g. Modified Discrete Cosine Transform 

(MDCT). 

2) Decompose the spectrum coefficient vector into 

sub-vectors. 

3) Quantize and encode spectrum envelop information 

and flattened sub-vectors separately. 

To achieve high quality at low bit-rates with this type 

of codec, we must consider the characteristics of audio 

signals. Most sounds in nature have spectral peaks 

(harmonics), and human ears are very sensitive to tones. 

Thus it is effective to preserve these dominant components 

over the sub-vector. 

To efficiently code the sub-vectors at low bit-rates, VQ 

[7] is a reasonable method. An optimal VQ codebook can be 

created when the distribution of target vectors is known. 

Therefore, many speech/audio codecs use the VQ technique 

for quantization of spectrum coefficients and other 

parameters [2][5].  

The larger the dimension of the vector and/or the 

greater the number of codebook entries, the more complex 

VQ becomes to calculate the distance between the input 

vector and all candidate vectors in the codebook. To reduce 

the computational complexity of VQ, various algorithms 

have been proposed [8]-[10]. Composite permutation coding 

[11][12] is one of the alternatives to VQ. This scheme 

reduces the distance calculations by omitting the 

permutation; composite codevectors can represent various 

shapes.

We propose composite permutation coding with low 

complexity indexing. It is derived using two constraints. 

First, each codevector has the same number of quantization 

levels. Second, the codevectors are distinguished by the 

number of components quantized into each level. 

This paper is organized as follows. In Section 2 we 

describe composite permutation coding. In Section 3 we 

implement the proposal for a 2 bit/scalar spectrum vector 

quantizer in a transform audio encoder. A performance 

comparison of the proposal and other quantizers is shown in 

Section 4. The paper concludes with discussion in Section 5. 

2. COMPOSITE PREMUTATION CODING 

Permutation coding is a block coding system of which there 

are two types. Variant I has a codebook of N-dimensional 

codevectors y1, y2,…, yM ,
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where i is the i-th quantization level and ni is the number of 

components quantized to i. The optimum values of i and 

ni are determined uniquely by the probability density 

function (PDF) of input vectors. y2, y3,…, yM are generated 

by reordering the components of yi. K is the number of the 

quantization levels which depends on the codebook size, 
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1

!/!    (4) 

where RM 2  at R bits. 

The ni largest components of an input vector are 

replaced by i one after another. 

Variant II is the same as Variant I except that Variant II 

quantizes the sign information separately. This means that 

all i are non-negative values, and sign bits are allocated for 

non-zero components. In Variant II, the codebook design is 

restricted, however, fewer operations are needed for error 

calculations than Variant I. 

Permutation codes are suitable for large length random 

sources whose PDF is known. Unfortunately, they cannot 

well quantize short vectors since they have only one 

combination of quantization levels and so cannot handle the 

shape instability of the short vectors. 

To solve this problem, the composite permutation 

coding [12] has multiple basic permutation codes such as yi.

3. IMPLEMENTING THE PROPOSAL 

This section describes the proposal, its implementation and 

a practical codebook optimization method. 

Composite permutation coding usually incurs high 

computational complexity for indexing. We propose 

composite permutation coding with a low complexity 

indexing algorithm using integer bit/scalar quantization. 

At B bit/scalar (B must be positive integer), the 

proposal sets the constraints. One is that K in (2) is 

determined by K = 2B for all basic permutation codevectors. 

The other is that the quantization levels of each basic 

permutation codevector are uniquely identified by {n1, n2,...,

nK}. These constraints enable each component of a selected 

codevector to be encoded in the same way as SQ, and 

eliminate the need for complex permutation indexing. Thus 

the proposal can represent various shapes with low indexing 

cost.

Figure 1.  Encoder block diagram with the proposal

The block diagram of the encoder with the proposal is 

illustrated in Figure 1. First, it decides the number of 

components quantized into each level, i.e. the selection {n1,

n2,..., nK}. Second, a codevector is selected according to this 

selection. Next, locate the optimum codevector using the 

same approach as used by composite permutation coding.   

We implement the proposal for the case of 2 bit/scalar 

quantization. According to [13], the marginal PDF of 

scalars in sub-vectors of the transform audio coding is very 

close to that of a Laplace distribution. To simplify the 

quantization, this paper assumes that the PDF of the input 

vectors is symmetric, and encode the sign information 

separately. In other words, 1bit/scalar is assigned for sign 

encoding and 1bit/scalar is for the permutation codes shape 

as in Variant II. 

It is generally difficult to optimize the codebook 

because we need to find the optimum codebook and the 

optimum {n1, n2,..., nK} at the same time. To reduce the 

valid space for finding the optimum codes, the proposal first 

normalizes the target vector and then encodes it. In this case, 

equation (2) can be rewritten as 

Nn
K
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For codebook optimization, we use an exhaustive 

search algorithm that finds the best relation between i and

ni.

To describe the relation in simple terms, we focus on 

the variance of codevector using 
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In the case of K = 2, the quantization levels 1 and 2

are obtained from (5) and (6) as follows. 
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Figure 2. PDF of normalized Laplace distributed noise (N=4,6,8)

Figure 3. Quantization results for peaky input vector 

Here s2 changes according to n1, so codebook optimization 

is equivalent to finding the combination of s2 for n1 = 1, 2,..., 

N that minimizes the quantization distortion. Once the 

optimum set of quantization levels is obtained, the 

codebook can be made from the basic permutation 

codevectors, N
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4. PERFORMANCE COMPARISON 

4.1. Laplace distributed noise simulation 

To clarify the performance of our proposal, we evaluated 

the quantization distortion and operating time of SQ, VQ, 

and the proposal. VQ performance is better than any 

composite permutation coding Variant II implementation. 

Note that VQ also quantizes the sign information separately. 

The input vector was normalized Laplace distributed noise. 

The dimensions of input vector N were 4, 6 and 8. Figure 2 

shows the PDFs of the input vector. 

The proposal found the optimum codebook by 2-stage 

resolution search to increase speed. At the first stage, 

resolution was 0.05 on s2, and in the second it was 0.01. 

Table 1 lists the optimum codebook generated by the 

proposal for an 8-dimensional vector. The quantization 

results by SQ (cross) and the proposal (circle) are shown in 

Figure 3. The broken line is an input vector that has a peak. 

In this case, an output vector of SQ is smoothed while the 

proposal preserves the peak. This shows that the proposal is 

suitable for representing tones that are important for 

perception. 

Table 2 shows the SNR of normalized Laplace 

distribution noise. We can see that the proposal achieves 

near VQ performance. Note that the PDF difference in 

Figure 2 leads the lower SNR for the higher dimension.  

Table 1. Optimum codebook of the proposal (N=8)

n1 variance 1 2

1 0.47  2.542  0.469  

2 0.40  1.870  0.409  

3 0.34  1.565  0.361  

4 0.27  1.374  0.335  

5 0.19  1.238  0.337  

6 0.14  1.143  0.279  

7 0.07  1.064  0.264  

8 - 1.000  1.000  

Table 2. SNR of normalized Laplace distributed noise 

SNR (dB) 

 4-dim 6-dim 8-dim 

SQ 11.44  10.36 9.80 

VQ 14.22  12.76 11.97 

Proposal 13.81  12.06 11.18 

Table 3. The number of operations and required codebook size 

dim Add. Multi. Comp.
codebook

size 

 SQ 8  8  4  2 

4 VQ 80  64  15  64 

 Proposal 20  16  15  8 

 SQ 12  12  6  2 

6 VQ 448 384  63  384 

 Proposal 42  36  35  12 

 SQ 16  16  8  2 

8 VQ 2304 2048  255 2048 

 Proposal 72  64  63  16 

To compare the computational complexity, we measure 

the number of operations (additions, multiplications and 

comparisons) and the required codebook size. The proposal 

performs sort processing, which can influence the number 

of comparisons. The evaluation result of the proposal in 

Table 3 is for the worst case.

4.2. Application to transform audio codec 

We applied the proposal to a 64 kbps transform audio coder 

with 32 kHz sampling frequnecy. The algorithm is based on 

[4] but applies 256-point MDCT once a frame and the 

resulted transform coefficients below 4 kHz and the rest are 

decomposed into four- and eight-dimensional vectors, 

respectively.

Figure 4 shows the PDFs of normalized MDCT 

coefficients of speech and music signals. We can confirm 

that they are similar to those of Laplace distributed noise as 

[13] pointed out. Then we built codebooks of SQ, VQ and 

the proposal optimized for this distribution. The 

quantization results when 2 bit/scalar allocated for all the 

coefficients are summarized in Table 4. It was confirmed 

that similar results can be obtained for real speech and audio 

signals. 

        : Input vector  

        : Output vector (SQ) 

        : Output vector (Proposal) 
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Figure 4. PDF of normalized MDCT coefficients (N=4,8)

Figure 5. Spectra of jazz music 

(Top: Original, Middle: SQ, Bottom: Proposal) 

Table 4. SNR of normalized MDCT coefficients 

SNR (dB) 

 4-dim 8-dim 

SQ 11.18  9.76 

VQ 13.95  12.04 

Proposal 13.31  11.17 

Figure 5 shows spectra of the compressed music signal. 

The middle one is the result in the case quantizing MDCT 

coefficients by SQ, and the bottom one is that by SQ and the 

proposal. Note that in Figure 5, the proposal is effective 

only for the normalized sub-vector to be quantized at 2 

bit/scalar. The proposal can preserve the peaks of harmonics 

better than SQ (shaded band). By an expert listening test, 

we confirmed that the proposal reduces the harsh noise in 

comparison with SQ. 

5. CONCLUSION 

This paper proposes a new vector quantization method for 

transform audio coding. It is based on composite 

permutation coding with a constraint on the number of 

quantization levels. SQ-like encoding allows the proposal to 

represent various shape vectors with low complexity. 

Simulations show that proposal achieves near VQ 

performance with lower computational complexity. We 

intend to implement and clarify the proposal’s performance 

at more than 3 bit/scalar quantization. 
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