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ABSTRACT

We introduce a novel temporal feature of a signal, namely

extrema-based signal track length (ESTL) for the problem of

speech segmentation. We show that ESTL measure is sen-

sitive to both amplitude and frequency of the signal. The

short-time ESTL (ST ESTL) shows a promising way to cap-

ture the significant segments of speech signal, where the seg-

ments correspond to acoustic units of speech having distinct

temporal waveforms. We compare ESTL based segmentation

with ML and STMmethods and find that it is as good as spec-

tral feature based segmentation, but with lesser computational

complexity.

Index Terms— Speech analysis, Speech processing

1. INTRODUCTION

Automatic segmentation of speech is an important problem

that is useful in speech recognition, synthesis and coding.

There has been many approaches to the problem of automatic

segmentation. In 1966D.R. Reddy [1] has developed a speech

segmentation scheme using the variation of intensity levels

and zero-crossing counts, and other program parameters were

obtained by visual inspection of the waveform. More recently

HMM based automatic phonetic segmentation has been re-

ported [2]; it requires extensive training data but they have

reported very high degree of segmentation accuracy. The pop-

ularly used feature vector based methods for speech segmen-

tation are Spectral Transition Measure (STM) and Maximum

Likelihood (ML) segmentation [3]. Of the spectral domain

methods, ML is widely used for phone based segmentation.

It was shown in [4] that MFCC serves as a robust pa-

rameter for speech segmentation. Due to co-articulation ef-

fect, the spectral transition across some phoneme boundaries

is not clearly defined and this results in segment boundaries

to appear in wrong locations. Hence, temporal domain fea-

tures have been explored for the problem of segmentation [5],

which compare favorably with spectral domain methods.

We introduce a new concept of signal track length mea-

sure, which is found to be sensitive to both signal amplitude

and frequency. Since acoustic segments have almost distinct

waveform structure, which is reflected in amplitude and fre-

quency of the the signal, we utilize signal track length to track

the change in either amplitude or frequency of the signal.

2. EXTREMA-BASED SIGNAL TRACK LENGTH
MEASURE

Let x(t) be a continuous-time signal. The signal track length
(STL) of x(t) over the interval [t1, t2] can be obtained by
integrating the infinitesimal track length dr (as shown in Fig.
1) over time t = t1 to t = t2. Let us consider the infinitesimal

t1 t2

x(t) + dx
x(t)

t t+dt

dr

dt

dx

Fig. 1. Signal track length measure.

time duration from t to t+ dt. Also let x(t+ dt) = x(t)+ dx.
Then dr =

√
(dt)2 + (dx)2. Therefore, STL of x(t) from

t = t1 to t = t2 is

STL(t1, t2) =

∫ t=t2

t=t1

dr =

∫ t=t2

t=t1

√
(dt)2 + (dx)2

=

∫ t=t2

t=t1

√
1 +

(
dx

dt

)2

dt

=

∫ t=t2

t=t1

√
1 + (x′(t))

2
dt (1)

where x′(t) is the first derivative of x(t). Since the functional
form of x(t) or x′(t) is not known, one has to resort to numer-
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ical integration using samples of x(t). However, we estimate
STL using the extrema information of the signal. Let t = tei

and tei+1
be the locations of two consecutive extrema of x(t);

i.e., x′(tei
)=0 and x′(tei+1

)=0. Then the STL from t = tei
to

t = tei+1
can be approximated as follows

STL(tei
, tei+1

) �
√

(tei+1
− tei

)2 + (x(tei+1
)− x(tei

))2 (2)

This we call extrema-based signal track length (ESTL) for

the interval [tei
, tei+1

] denoted by ESTL(tei
, tei+1

). ESTL
of x(t) from t = t1 to t = t2 can be calculated by finding the
extrema points in between t1 and t2 and summing all inter-
extrema signal track length. If there are M extrema in be-

tween t1 and t2, ESTL(t1, t2) can be calculated as follows,

ESTL(t1, t2) =
√

(te1
− t1)2 + (x(te1

)− x(t1))2

+

M−1∑
i=1

√
(tei+1

− tei
)2 + (x(tei+1

)− x(tei
))2

+
√

(t2 − teM
)2 + (x(t2)− x(teM

))2 (3)

where the first and last term calculate the ESTL from t1 to
first extrema andM th extrema to t2 respectively.

2.1. Essential property of ESTL

The special property of ESTL is that it is sensitive to both

signal amplitude and signal frequency; i.e., ESTL(t1, t2) of
x(t) is determined by the amplitude and frequency content of
the signal over the time interval [t1, t2] . This can be easily
shown by considering x(t) = Asin(ω0t + φ), where A is the
amplitude of the sinusoid; ω0 = 2π

T0
= 2πf0, where T0 is the

period of the sinusoid; φ is the initial phase of the signal.
Since the sinusoid has one extrema for every T0

2 second,

the number of extrema of x(t) between t1 and t2 is given by

M �
t2 − t1
T0/2

=
2(t2 − t1)

T0
[assuming t2 − t1 � T0] (4)

By neglecting the first and last term in (3), (since t2 − t1 �
T0) we can write

ESTL(t1, t2) �

M−1∑
i=1

√(
T0

2

)2

+ (2A)2

� M

√(
T0

2

)2

+ (2A)2 [M � 1]

= (t2 − t1)
4A

T0

√
1 +

(
T0

4A

)2

(5)

For T0

4A
� 1

ESTL(t1, t2) � (t2 − t1)
4A

T0
= (t2 − t1)4Af0 (6)

The condition under which (5) reduces to (6) can be written

asAf0 � .25, i.e., Af0 ≥ 2.5. ForA = 1 this means that the
frequency of the sinusoid has to be greater than 2.5 Hz, which

is a feasible assumption for most practical signals.

From (6) it is clear that ESTL is proportional to Af0.

Thus, short-time ESTL of a signal will exhibit significant change

if either amplitude or frequency of the signal changes signifi-

cantly. However, if the amplitude and frequency change in a

signal is such that their product remains constant, the short-

time ESTL (ST ESTL) does not change. This is shown for

a synthetic signal in Fig. 2. The Teager Energy Operator
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Fig. 2. ESTL measure for a synthetic signal: (a) Signal
consisting of four sinusoidal segments each of 0.1 sec hav-
ing amplitude and frequency combinations as (0.5, 200Hz),
(1, 100Hz), (0.5, 100Hz) and (1, 200Hz) respectively. (b)
ST ESTL computed using short-time window of 30 ms and
shift of 5 ms.

(TEO) of the signal x(t) is proportional to A2f2
0 [6]. Thus,

the square of ESTL(t1, t2) is also a measure of the local sig-
nal energy in the sense of TEO.

2.2. ESTL for discrete-time signals

For a discrete-time signal x[n], extrema locations (EL) and
extrema amplitude (EA) are estimated as follows

ith EL ηi = n (7)

if x[n− 1] < x[n] > x[n + 1],

or x[n− 1] > x[n] < x[n + 1],

and ith EA ξi = x[ηi] . (8)

To minimize error in estimating extrema information in case

of discrete-time signals we upsample x[n] to a high sampling
frequency (Fs = 1

Ts
, Ts : Sampling period), say 48 kHz for

speech. Using these extrema information, we calculate ESTL

from n = n1 to n = n2 by replacing tei
and ti by Tsηi and

Tsni respectively in (3).
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3. SPEECH SEGMENTATION USING ST ESTL

Considering speech signal to be a multicomponent signal [7],

different speech events have distinguished amplitude and fre-

quency information. Since ST ESTL changeswith the change

in both amplitude and frequency,we use ST ESTL as a means

of identifying different speech events. Let us look at a typical

ST ESTL plot of a speech file ‘sa1.wav’ taken from TIMIT

database, shown in Fig. 3. Form Fig. 3(b) it is clear that
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Fig. 3. ESTL measure on speech data: (a) Speech signal (b)
ST ESTL for 20 ms frames, with 10 ms shift (c) ST ESTL for
20 dB SNR condition (d) ST ESTL for 10 dB SNR condition.

ST ESTL has very small value during silence region (either

at the very beginning of the sentence or in between words).

ST ESTL has significant values when either the signal ampli-

tude is high (0.42-0.5 sec, 0.8-0.9 sec) or signal frequency is

high (0.15-0.25 sec, 1.04-1.18 sec). Hence, we pick the lo-

cation at which ST ESTL has significant changes and mark

them as segment boundaries. The algorithm for finding the

segment boundaries (given the required no of segments P for
a speech signal) is described below :

• Step 1: Given a speech signal x[n], normalize its am-
plitude to +1 to -1.

• Step 2: Use analysis window of 20 msec and shift of
10 msec to calculate ST ESTLm, wherem is the frame
index.

• Step 3: Let ESTLmin and ESTLmax denote the mini-

mum and maximum value of the ST ESTLm. Since the

ST ESTLm will yield small values for non-speech re-

gion of the signal, choose a threshold ESTLth = ESTLmin

+ 0.1{ESTLmax-ESTLmin} and mark the frames as
segment boundaries, where ST ESTL plot crosses ESTLth.

This gives a gross segmentation, which mainly isolates

speech from silence. Suppose, we obtain P1 number of

segment boundaries from this step.

• Step 4: Consider all valleys in ST ESTL plot with am-
plitude Av such that Av > ESTLth. Let us consider

ith valley with amplitude Avi
and the respective left

and right peak with amplitude Ali and Ari
. We ar-

range all valleys in ascending order according to the

valley depth factor defined as
Avi

(Ali
Ari

)
1
2

. Out of these

arranged valleys we select the first (P −1−P1) valleys

as segment boundaries.

We also explore the noise robustness property of ST ESTL

curve for segmentation at high and medium SNR condition.

From Fig. 3(b) and (c) it can be noted that the peak and valley

locations of ST ESTL remain unaltered for signal with addi-

tive noise upto 10 dB SNR. Hence the same algorithm is used

to find segment boundaries in noisy cases.

4. EXPERIMENTS AND RESULTS

It was shown in [4] that MFCC parameters provide the most

robust feature for segmentation. To computeMFCC (16MFCC

coefficients per frame), we have used a analysis window length

of 20 ms, and window shift of 10 ms. To compare the per-

formance of ESTL based segmentation, we have chosen two

spectral domain methods:

(1)ML segmentation, using MFCC with a symmetric lifter
(1+Asin

1
2 (πn

L
)), proposed in [4].

(2)Spectral Transition Measure (STM) using the feature vec-
tor and lifter combination in (1).

The experiments have been conducted on 50 male and 50

female speakers’ sentence (Sampling frequency = 16 kHz)

taken from TIMIT database. The experiment was performed

on these clean speech sentence as well as on noisy speech

with SNR of 30, 20 and 10 dB. The no of manual segments

given by TIMIT database is used as input to the ESTL based

segmentation algorithm. For ML segmentation (without any

duration constraint), we have assumed the same number of

segments. STM requires a global thresholding; to circumvent

the problem, we have used STM with same number of seg-

ments, and only those number of largest peaks are detected for

segmentation. If the obtained boundary is within±20ms of a
TIMIT boundary, we call it a ‘match’(M). If two consecutive

boundaries match, we count it as a ‘segment match’(S). Also,

insertion(I) and deletions(D) are noted, keeping the ±20 ms
constraint.

From table 1 we see that the segmentation performance

of ESTL method is better than STM but worse than that of

ML. The performance is steady at medium SNR due to noise

robustness property of the ESTL. As the SNR of the sig-

nal decreases, %M for ESTL-based method remains almost

same but the insertion rate increases. This is because even

though the shape of ST ESTL curve remain same, with ad-

ditive noise spurious vallyes appear in the ST ESTL curve

which results in increasing number of wrong segment bound-

aries. The ESTL based segmentation is computationally sim-
pler than ML as we need to pick only the valleys of the one di-
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Table 1. Segmentation performance of ESTL and other spec-
tral domain methods

Method SNR(dB) M% I% D% S%

ESTL clean 80.1 11.9 19.9 53.4

ML clean 85.1 11.7 14.9 56.1

STM clean 69.0 25.4 31.0 48.9

ESTL 30 80.0 12.7 20.0 52.0

ML 30 86.0 12.5 14.0 55.3

STM 30 69.3 25.1 30.7 42.1

ESTL 20 79.4 15.7 20.6 48.3

ML 20 84.3 16.9 15.7 53.7

STM 20 71.7 26.8 28.3 42.9

ESTL 10 78.9 20.8 21.1 43.7

ML 10 76.9 22.1 23.1 49.8

STM 10 68.8 27.7 31.2 40.5

mensional feature contour, unlike the full-search optimization

using multi-dimensional spectral features in ML. Simulations

show that the cpu time for running segmentation algorithm

using the ESTL is almost 25% of that of the ML segmenta-

tion.

We present (in Fig. 4 and Fig. 5), the spectrogram and

time domain plot of two signal segments along with ST ESTL

of the signal. In both figures part (a) shows the spectrogram

with overlaid segment boundaries as in TIMIT database, part

(b) shows the time domain plot of the speech signal and part

(c) shows the ST ESTL with segment boundaries obtained

from ST ESTL based algorithm.
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Fig. 4. Comparison of manual and ESTL boundaries for
’si1271.wav’ over last 1.7 sec.
As can be seen from both the figures, most of the acoustic

units in speech can be identified by either amplitude or fre-

quency changes. Vowel and diphthongs have high energy,

while fricatives have higher frequency content. Therefore,

they are well segmented using the algorithm applied on ST ESTL

plot. Nasal and stops are also segmented easily. Amplitude

variation within a phonemic segment has given rise to inser-

tion error (/sh/ at 0.6 sec, Fig. 4). Also in ’programs’ (0.82-

1.46sec Fig. 5), /p/r/ow/g/r/ae/m/, /r/ phone (part of consonant

clusters /g/r/) and /l/ (0.45 sec in Fig. 5) have been missed.
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Fig. 5. Comparison of manual and ESTL boundaries for
’sx146.wav’ over 0-1.6 sec.

5. CONCLUSION

We have presented a temporal domain method for the prob-

lem of speech segmentation. ESTL is found to capture both

amplitude and frequency changes in the signal and hence is

suitable for finding segments of speech which have distinct

amplitude or frequency content.
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