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ABSTRACT

We present a method that de-modulates a narrowband mag-
nitude spectrogram S(f, t) into a frequency modulation term
cos(φ(f, t)) which represents the underlying harmonic car-
rier, and an amplitude modulation term A(f, t) which rep-
resents the spectral envelope. Our method operates by per-
forming a two-dimensional local patch analysis of the spec-
trogram, in which each patch is factored into a local carrier
term and a local amplitude envelope term using a Max-Gabor
analysis. We demonstrate the technique over a wide variety
of speakers, and show how the spectrograms in each case may
be adequately reconstructed as S(f, t) = A(f, t)cos(φ(f, t)).

Index Terms— speech analysis, spectral analysis, time-
frequency analysis, modulation

1. INTRODUCTION

A particularly useful model of a narrowband magnitude spec-
trogram S(f, t) is

S(f, t) = A(f, t)cos(φ(f, t)) (1)

where cos(φ(f, t)) is a 2D spectro-temporal modulation term
representing the underlying harmonic carrier, andA(f, t) is a
2D amplitude modulation term representing the overall spec-
tral envelope. In keeping with similar AM-FM approaches
used to model 1-D speech signals, we call this model a 2-D
AM-FM model of narrowband speech spectrograms.

It is important in many speech applications to be able to
de-modulate, or separate, the spectrogram into separate AM
and FM components, and we present such a method in this
work. Our method operates by performing a 2-D local patch
analysis of the spectrogram, in which small spectro-temporal
patches P (f, t) from the spectrogram are themselves individ-
ually de-modulated into local patch carriers cos(φ(f, t)) and
local amplitude envelopesA(f, t).

Our algorithm works in two steps: In the rst step, the lo-
cal carrier cos(φ(f, t)) within a patch is estimated. The basic
assumption made here is that the underlying carrier belongs to
a parameterized family of 2-D spectro-temporal Gabor lters.

Our algorithm thus nds the “best- t” 2-D Gabor lter for
each patch, an analysis which we term Max-Gabor analysis.
In our previous work [1], we also used a Max-Gabor analysis
for patch carrier estimation, but in this work we robustify its
use even further by estimating the carrier from patch gradi-
ents rather than from raw patch values.

In the second step of our algorithm, a local amplitude en-
velope A(f, t) for that patch is estimated using the local car-
rier cos(φ(f, t)) obtained from the previous step. In prior
work [1], we assumed that the ampltitude envelope was con-
stant over the patch, which is clearly an inadequate assump-
tion since amplitude modulations can vary signi cantly within
a single patch. In this work, we estimate a smooth but non-
constant local ampltitude envelope for each patch using scat-
tered data interpolation techniques.

We also demonstrate how to overlap-add the estimated lo-
cal patch carriers and envelopes to construct carriers and en-
velopes for the entire spectrogram. Additionally, we demon-
strate how to obtain an estimate of the smooth phase surface
φ(f, t) for the entire spectrogram. Finally, we demonstrate
how the spectrograms in each case may be adequately recon-
structed as S(f, t) = A(f, t)cos(φ(f, t)).

It is instructive to note that prior work on AM-FM de-
modulation of signals has been applied either to 1-D speech
signals [2], or to 2-D images [3] [4], but surprisingly never to
magnitude spectrograms! Additionally, these previous works
rely on using either Kaiser-Teager energy separation algo-
rithms [3] [2] or on analytic Hilbert computations [4] to de-
modulate the patch AM and FM components simultaneously,
from all points in the patch. Instead, we rely on a simpler
two-step algorithm which rst estimates the FM carrier, and
then estimates modulating AM envelope.

We discuss the individual steps of our algorithm in the
sections below.

2. LOCAL CARRIER ESTIMATION

2.1. 2D Gabor Carrier Family

We de ne a family of spectro-temporal 2D Gabor carriers
C(f, t) parameterized by spectro-temporal frequencyF , spectro-
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Fig. 1. Overview of AM-FM patch demodulation using Max-Gabor Analysis.

temporal orientation Θ, and phase Φ as:

C(f, t) = W (f, t) · cos(2πF x̂+ Φ) (2)

where
x̂ = tcosΘ + fsinΘ (3)

andW (f, t) is a symmetric 2D Gaussian window.
2-D spectro-temporal Gabors look like sets of oriented

lines on the 2-D spectro-temporal plane, and as such are espe-
cially well-suited to model harmonic carriers in speech. The
parameter F controls the spacing between the lines; the pa-
rameter Θ controls the orientation of the lines; the parameter
Φ controls the position of the lines within the local patch grid.

It is well-known [5] that the Fourier transform of a 2-D
Gabor looks like a pair of conjugate Gaussian “peaks”, whose
distance from each other is proportional to F , and whose ori-
entation is proportional to Θ. As will be evident, Max-Gabor
analysis relies heavily on this fact in estimating the local patch
carrier. (This same fact was used independently by [6] for
pitch-tracking).

It is highly instructive to re-write Equation 2 as

G(f, t) = W (f, t) · cos(φ(f, t)) (4)

where

φ(f, t) = 2πF x̂+ Φ (5)

represents a local planar phase surface corresponding to the
Gabor carrier. As we are interested in ultimately reconstruct-
ing our spectrograms, our AM-FM demodulation algorithm
must keep track of this phase surface across the spectrogram.

Finally, we point out that, since magnitude spectrograms
are non-negative, all of our computations in Equations 2 or 4
involve rectifying the carriers by setting their negative com-
pononents to zero.

2.2. 1D STFT

All of the 16KHz utterances we consider are rst STFT an-
alyzed using a 25msec Hamming window with a 1ms frame
rate and a zeropadding factor of 4. This yields 1600 dimen-
sional STFT frames, which are truncated to 800 bins due to

the symmetry of the Fourier transform. We limit our analysis
in this paper to the magnitude spectrogram of each utterance,
which we represent notationally as S(f, t). Additionally, we
limit our analysis to a linear frequency axis, deferring loga-
rithmic frequency analysis to future work.

2.3. Patch Extraction

At every grid point (i, j), we extract a patch Pij(f, t) of the
spectrogram of size df and width dt. The height df and width
dt of the local patch are important analysis parameters: they
must be large enough to be able to resolve the underlying lo-
cal dominant carrier, but small enough so that the underlying
signal is locally stationary. Suitable parameter ranges are 5-
15msec for the dt parameter, and 600Hz − 800Hz for the
df parameter. Additional analysis parameters are the window
hopsizes in time Δi and frequency Δj. Typically we set Δi
to be 3-5ms and Δj to 150-350Hz, which creates overlap be-
tween the patches.

2.4. Patch Gradients

For every patch Pij(f, t), we compute its spectral gradient
δPij

δf
and its temporal gradient δPij

δt
using simple local second-

order differences. As shown in Figure 1, computing gradi-
ents highlights the local edge details in the patch. This allows
us to determine the underlying carrier independent of the lo-
cal patch ampltitude levels. The spectral gradient δP

δf
high-

lights horizontal edges, which usually relate to speech har-
monics, while the temporal gradient δP

δt
hightlights vertical

edges, which usually relate to speech transients. Of course,
we are not just limited to taking vertical and horizontal deriva-
tives, and one can imagine augmenting our analysis with a
whole bank of other directional derivative lters. However,
for the sake of computational simplicity, we limit ourselves
in this work to horizontal and vertical gradient computations.

2.5. 2D Local FFT

A local 2D FFT analysis is then performed on patch gradi-
ents δPij

δf
and δPij

δt
separately: First, we multiply each patch

gradient by a 2D Gaussian window W (f, t) of the same size
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as the patch. Second, a 2-dimensional Fourier transform of
size NH × NW is performed on each windowed patch gradi-
ent to produce the local spectral-temporal gradient magnitude
spectrum:

Rx
ij(Ω, ω) =

‚
‚
‚
‚
P

f

P
t W (f, t)

δPij (f,t)

δx
e
−j2π Ω

NH
f
e
−j2π ω

NW
t
‚
‚
‚
‚

Finally, we sum the spectro-temporal gradient magnitude spec-
trum for each patch gradient component to produce the total
combined magnitude spectrum for that patch:

Rij(Ω, ω) = R
f
ij(Ω, ω) +Rt

ij(Ω, ω) (6)

Typical valuesNH andNW are 256 and 48 respectively.

2.6. Maximum Peak Detection

Visual inspection of Rij(Ω, ω) for different patches reveals
that most of the spectra exhibit a Gabor-like spectral struc-
ture. As shown in Figure 1, this is exempli ed by the presence
of two dominant Gaussian-like peaks in the spectrum whose
location we wish to identify. Additionally, a set of smaller
similarly-oriented peaks exist because the magnitude STFT is
non-negative. A host of other local peaks also emerge due to
noise in the patch.

We use a simple peak-detection strategy to obtain a set C
of candidate peak locations and values in the spectral response
Rij(Ω, ω). We match the conjugate peak locations in C with
each other into pairs and throw out any peak candidates which
do not have matching conjugate peaks. Finally, we choose
among the peak pairs in the setC the one with the largest peak
value. This pair will comprise our estimate for the underlying
dominant Gabor carrier in the patch.

2.7. Local Carrier Parameter Estimation

The local carrier orientation Θ(i, j) and frequency F (i, j)
may be estimated from the chosen peak pair as

Θ(i, j) = tan−1

(
ΔΩmax

Δωmax

)
(7)

and

F (i, j) =

√(
ΔΩmax

NH

)2

+
(

Δωmax

NW

)2

2
(8)

where ΔΩmax and Δωmax refers to differences between the
conjugate pair location coordinates. Local carrier phaseΦ(i, j)
is estimated by projecting the input patch Pij(f, t) onto a
complex Gabor C∗(f, t) = W (f, t) · ej(2πFx̂) with local fre-
quency F (i, j) and local orientation Θ(i, j):

Φ(i, j) = angle

⎛
⎝∑

f

∑
t

W (f, t)Pij(f, t)C
∗(f, t)

⎞
⎠

Fig. 2. Left column: Sample input patches Pij(f, t), 2nd col-
umn: Estimated phase surface φij(f, t), 3rd column: Esti-
mated carrier cos(φij(f, t)), 4th column: Estimated ampli-
tude envelope Aij(f, t), Final column: AM-FM approxima-
tion to each patch Aij(f, t)cosij(φ(f, t))

Given estimates F (i, j), Θ(i, j), and Φ(i, j) for each patch,
we can synthesize the local phase surface φij(f, t) and the
local carrier cos(φij(f, t)) using Equation 5.

Shown in Figure 2 are example input patches, as well as
the estimated local carriers and phase surfaces for each.

3. LOCAL AMPLITUDE ENVELOPE ESTIMATION

3.1. Carrier Peak Detection and Input Patch Sampling

To estimate the local amplitude envelope Aij(f, t), the local
carrier cos(φij(f, t)) is rst thresholded for values greater
than 0.95. This yields a set of N locations {fi, ti}

N
i=1 that

represent the locations of the carrier peaks. The input patch
Pij(f, t) is then sampled at these locations, yielding a set of
value-location triples V = {Ak, fk, tk}N

k=1. The set V is g-
uratively shown in Figure 1 as the set of “X” marks on the
right-hand side of the gure.

3.2. Scattered Data Interpolation

A scattered data interpolation approach is used to interpolate
the set of points V and ll in values for the entire local ampli-
tude envelope Aij(f, t). This is done by minimizing an error
E that contains a target term which penalizes envelopes that
do not match the sampled points in V , and a gradient smooth-
ness term that penalizes local envelopes that are not smooth:

E =
∑
k

(A(fk, tk) −Ak)
2

︸ ︷︷ ︸
target term

+λ
∑
f,t

|∇A|2

︸ ︷︷ ︸
smoothness

(9)

In this work, we implement Equation 9 using the Matlab rou-
tine gridfit, with λ set to 30. Shown in Figure 2 are exam-
ples of estimated local amplitude envelopes for various local
input patches.

Intuitively, our algorithm computes the envelope only from
points located at the peaks of the underlying estimated car-
rier, throwing out all other samples. This makes our method
more robust than other methods which estimate the envelope
from all the points in the patch.
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Fig. 3. Top row, left to right: Original magnitude spectrogram S(f, t), reconstructed spectrogram Ŝ(f, t), amplitude enve-
lope A(f, t). Bottom row, left to right: smooth phase surface φ(f, t), recti ed harmonic carrier cos(φ(f, t)), Gabor patch
frequencies F (i, j), and Gabor patch orientations Θ(i, j). Our spectrograms are ipped so low frequency is at the top.

4. AM-FM PATCH OVERLAP-ADD

Given the estimated local amplitude envelopes Aij(f, t) for
each patch, we construct the complete envelope A(f, t) for
the whole spectrogram using overlap-add:

A(f, t) =

∑
i

∑
j W (f, t)Aij(f, t)∑
i

∑
j W (f, t)

(10)

Similarly, we overlap-add the local carriers cos(φij(f, t)) for
each patch to construct the complete carrier cos(φ(f, t)):

cos(φ(f, t)) =

∑
i

∑
j W (f, t)cos(φij(f, t))∑

i

∑
j W (f, t)

(11)

Obtaining an estimate of the smooth phase surface φ(f, t) for
the entire spectrogram is a bit more involved: We additionally
overlap-add local sine carriers sin(φij(f, t)):

sin(φ(f, t)) =

∑
i

∑
j W (f, t)sin(φij(f, t))∑

i

∑
j W (f, t)

(12)

Then a principal phase surface is obtained as:

φP (f, t) = atan

(
sin(φ(f, t))

cos(φ(f, t))

)
(13)

Finally, the desired smooth phase surface φ(f, t) is obtained
by 1-D column-unwrapping the principal phase surface:

φ(f, t) = Unwrap 1d(φP (f, t)) (14)

. 5. RESULTS AND CONCLUSIONS

We analyzed and reconstructed several test utterances of dif-
ferent speakers uttering the phrase ‘‘Hi Jane’’. An ex-
ample of our results is shown in Figure 3. 1. The rst and sec-
ond plots in the gure show the real spectrogram S(f, t) and

1See http://cuneus.ai.mit.edu:8000/research/amfm
for more results

the reconstructed spectrogram Ŝ(f, t) = A(f, t)cos(φ(f, t)).
The following plots depict (consecutively) the estimated am-
plitude envelope A(f, t), smooth phase surface φ(f, t), (rec-
ti ed) harmonic carrier cos(φ(f, t)), Gabor patch frequencies
F (i, j), and Gabor patch orientations Θ(i, j).

In order to perform auditory comparisons, we synthesized
time waveforms for both original and reconstructed magni-
tude spectrograms using sinusoidal analysis/synthesis tech-
niques [7]. Informal listening tests indicated that both were
very similar to each other, which suggests that our technique
is successful at capturing the important aspects of the spec-
trogram.

Future work will consist of exploring the use of the ex-
tracted parameters for applications such as speech recogni-
tion, compression, de-noising, and synthesis.
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