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ABSTRACT 

 
A novel algorithm based on classical cepstrum calculation 
followed by dynamic programming is presented in this paper. The 
algorithm has been evaluated with a 60-minutes database 
containing 60 speakers and different recording conditions and 
environments. A second reference database has also been used. In 
addition, the performance of four popular PDA algorithms has 
been evaluated with the same databases. The results prove the 
good performance of the described algorithm in noisy conditions. 
Furthermore, the paper is a first initiative to perform an evaluation 
of widely used PDA algorithms over an extensive and realistic 
database. 
 

Index Terms— Speech analysis, Pitch detection 
 

1. INTRODUCTION 
 
Pitch detection and marking is a recurrent topic in published 
papers inside the speech research community. The interest arises 
naturally from the enormous range of applications and 
technologies that need and use a pitch detection algorithm (PDA). 
Precise calculation of the fundamental frequency in the speech 
signal has demonstrated to be a basic task in almost all areas of 
speech research, from traditional areas such as speech coding to 
more recent areas of research like novel speech synthesis 
techniques or speaker emotional state characterization. 

Improving on the first proposed methods based on the 
periodicity of the speech spectrum at voiced segments [1], a great 
variety of algorithms have been proposed (see [2] for a revision on 
classic methods). Some of them are very popular, either because 
they are publicly available or because they come packaged with 
some software analysis tool [3][4][5][6]. Considering that many 
users of these packages are not necessarily part of the speech 
research community (linguists, educators, speech therapists…), 
setting references and standards for the evaluation of their quality 
becomes a necessary task. 

The perfect pitch detector should perform well under any 
reasonable noise or bandwidth condition. In that respect, several 
robust pitch detection algorithms have been proposed and claim to 
perform well under different noise conditions [7][8]. 

However, up to now no work has been published describing the 
evaluation of any algorithm with a significant amount of data. 
Some papers describe the performance of the algorithm only in a 
qualitative way, using a reduced set of signals and speakers. Others 
use ad-hoc small to medium size databases (some minutes) with 
very few speakers (2 to 5). In the last years, two speech databases 

have been used as reference for evaluation, mainly due to their 
public availability: the CSTR database and the Keele Pitch 
Reference database [3][5][9][10][11][12]. The first is about 5 
minutes long and contains data from two speakers [9]. The second 
is about 10 minutes long with speech from five males, five females 
and five children [13]. 

This paper presents a novel pitch detection algorithm based on 
a classic representation (the cepstrum coefficients) followed by 
dynamic programming. We also present its evaluation comparing 
its performance with four other popular algorithms, using the 
CSTR database and a 60 minutes long database recorded by 60 
speakers in four different recording channels [14]. 

Section 2 of this paper is dedicated to the description of the 
cepstrum-based detection algorithm and the conditions used for the 
selection of the best path using dynamic programming. Section 3 
presents the performed experiments and the results. Conclusions 
are drawn in Section 4. 
 

2. CEPSTRUM BASED PITCH DETECTION 
ALGORITHM 

 
The proposed algorithm, called CDP, is based on cepstrum 
calculation followed by a dynamic programming module. After 
windowing the input signal, a set of pitch candidates is generated. 
This set is used by the dynamic programming algorithm to select 
the best pitch curve. As final step this curve is smoothed. 
 
2.1. Selection of F0 candidates 
 
The input signal is windowed by means of a Hamming window 
58ms long. The length of the window has been chosen as to 
account for at least two periods in the minimum pitch case. Pitch 
values in the range of [35Hz-500Hz] have been considered. This 
range also applies to the selection of the cepstrum coefficients, in 
such a way that only coefficients with indexes included in [imax, 
imin] range will be considered: 
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with Fs being the sampling frequency. The indexes are calculated 
as the closest integer to the bracketed expression. 

Before proceeding to the search of the maximum coefficient 
whose index is supposed to give the pitch value, the coefficients ci 
are normalized to the mean value inside the considered frame, 
giving the normalized coefficient c’i: 
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This normalization offers a more coherent scale throughout the 
signal than the coefficients themselves, making the values more 
independent to changes in the signal, such as its energy.  

A set of M+1 candidates for the final pitch value is generated 
selecting the biggest M normalized cepstrum coefficients. The last 
candidate is a “No-Pitch” value used to allow the Viterbi algorithm 
to decide for an unvoiced frame. In this way, no decision upon 
voicing is made in this module, letting the final decision to the 
Viterbi algorithm. The M+1st candidate will be called the 
unvoiced candidate. 

 
2.2. Viterbi algorithm 
 
Once the set of M+1 candidates is available for each frame the 
values that will build the pitch curve must be selected. This is done 
by using dynamic programming, selecting those that belong to the 
minimum cost curve. As usual, the selection cost has two 
components: a local cost Cl, associated to the selected candidate 
and independent of the neighbouring candidates; and a transition 
cost Ct, that considers the previous candidate. Four classical 
criteria are used to define the cost values: 
1. The most probable candidate is the index of the maximum 

normalized cepstrum coefficient. 
2. If the maximum value is small (smaller than a certain 

threshold), the frame is probably unvoiced. 
3. There should not be sudden changes in the pitch curve. If there 

is one such sudden change, it is probably because it is an 
harmonic or a sub-harmonic of the real F0 value.  

4. It is very unlikely that there is a fast voiced-unvoiced-voiced 
transition. An isolated unvoiced frame is probably due to noise 
and can be considered a detection error. 
The defined local cost for the m-th coefficient in the j-th frame 

is calculated as the sum of two terms: 
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The first term in (4) is related to voiced candidates, assigning a 
cost reversely proportional to the logarithm of the normalized 
cepstrum coefficient. We assume here that the most probable 
candidate is the index of the maximum normalized cepstrum 
coefficient (criterion 1). This term will be zero for unvoiced 
candidates. 

The second term in (4) is related to the cost of exceeding the 
voiced-unvoiced decision threshold T. For voiced candidates, it 
will take the value “1” only if the coefficient is below the pre-
established threshold (see eq. (6a)). For unvoiced candidates, this 
cost will take the value “1” if there is at least one cepstrum 
coefficient over the threshold and “0” otherwise (see eq. (6b)). 

The transition cost is calculated according to the following 
expression: 
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where fj is the fundamental frequency candidate for frame j.  
As can be seen in (7), the frame transition between voiced 

candidates is favoured (low cost) if their corresponding 
frequencies are close. Transition cost from voiced candidates to 
unvoiced candidates and vice versa is constant. Finally, unvoiced-
unvoiced transitions are assigned cost zero. 

All the weights (wV, wthr, wcont, wVUV) and thresholds (T) have 
been set empirically and remain constant for all the experiments 
presented in section 3. Specific tuning of these values for different 
speakers or noise conditions can improve the results. 

The result of this module is an intermediate pitch curve that 
will be post-processed in the next module by nonlinear smoothing. 
 
2.3. Post-processing 
 
The fundamental frequency of a speaker can be modelled by a log-
normal distribution [15]. Detected pitch values too far away from 
the mean of that distribution can be considered as errors, and the 
farther away from that mean they are, the bigger the probability 
that an error has been made is. 

A threshold TL has been defined to decide for out-of-range F0 
values. This threshold is calculated as L times the standard 
deviation of the log-normal distribution for the whole signal. L can 
be non-integer and values from 2.5 to 3.5 produce good results. A 
more conservative value of 2.5 has been chosen in the experiments 
presented in this paper. For other speech databases (such as 
expressive speech databases) a higher value would be more 
convenient. 

The smoothing module checks each F0 value of the output 
curve from the Viterbi module to know whether that value is out-
of-range. However, being out of range might not always be an 
error: if that out-of-range value belongs to a voiced segment, it will 
be declared unvoiced only if the whole segment lies out of range. 
 

3. EXPERIMENTS 
 
3.1. Evaluation databases 
 
To evaluate the behaviour of the algorithm under noisy conditions, 
a subset of SPEECON Spanish database was used. SPEECON 
databases [14] sought to get speech signals in different acoustic 
environments mainly for speech recognition. Signals were 
acquired by four channels simultaneously, using different 
microphones and in different locations like cars, offices, public 
places, etc. The first channel, C0, was recorded with a close-talk 
microphone. C1 was recorded with a Lavalier microphone; C2 
with a directional microphone 1 meter away from the speaker, and 
C3 with an omnidirectional microphone 2-3 meters away from the 
speaker. 

Obviously, the signal to noise ratios of each channel are very 
different. Recordings of the C0 channel have SNR of about 30 dB, 
while, at the other end, the C3 channel has lower ratios, around 0 
dB. 
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The subset of the SPEECON [16] used in the experiments 
contains sentences from 60 speakers, 30 male and 30 female. Each 
speaker recorded 1 minute of speech, adding up 60 minutes per 
channel. Reference pitch values have been obtained automatically 
and thoroughly revised manually, in the way described in [16]. 

The algorithm has also been evaluated against the CSTR 
database [9], a classical PDA evaluation reference database. This 
database contains five minutes of speech from one male and one 
female speaker. The sentences were specifically chosen to test 
pitch detection algorithms, thus including utterances containing 
voiced fricatives, nasals, liquids and glides, since PDAs generally 
find these difficult to analyse. The reference pitch values estimated 
from simultaneously recorded EGG are also provided. 

For both databases the evaluation experiment has been the 
same: reference pitch values have been obtained at 1 ms rate and 
every value has been compared with its counterpart in the 
estimated pitch curve. The high sampling rate of the pitch curves 
to be compared poses demanding requirements in the accuracy of 
the algorithms. 
 
3.2. Pitch estimation methods and evaluation criteria 
 
Comparative data is necessary to assess the actual performance of 
the pitch detection module; therefore another four renowned 
algorithms were chosen to be evaluated along with our CDP 
algorithm. These algorithms were: 
1. AM: Praat1 PDA based on accurate autocorrelation method [4]. 
2. SRPD: Edinburgh Speech Tool Library’s2 implementation of 

super resolution pitch determinator [9]. 
3. SHR: PDA based on subharmonic to harmonic ratio, in an 

implementation described in [3]. 
4. RAPT: The KTH’s WaveSurfer/ESPS implementation3 of a 

robust algorithm for pitch tracking [6], a method based on 
normalized cross-correlation and dynamic programming. 
In all cases, default values were used for the parameters, except 

for the F0 range. The accuracy of the different pitch estimation 
methods was measured according to the following criteria: 
1. Classification Error (CE): it is the percentage of unvoiced 

frames classified as voiced and voiced frames classified as 
unvoiced. 

2. Gross Error (GE): percentage of voiced frames with an 
estimated F0 value that deviates from the reference value more 
than 20%. 

3. Mean (M): mean of the absolute value of the difference 
between the estimated and the reference pitch curve (Gross 
Errors are not considered for this calculation). 

4. Standard Deviation (SD): standard deviation of the absolute 
value of the difference between the estimated and the reference 
pitch curve (Gross errors are not considered). 

 
3.4. Results 
 
Results of the evaluation with the SPEECON database are shown 
in tables 1 to 4, grouping the results by channel. With regard to the 
classification error (CE) for the channel 0 with low noise levels, 
correlation based algorithms get the best results. Our frequency 
domain based classification lies in the middle of the range. 

                                                 
1 www.praat.org 
2 www.cstr.ed.ac.uk 
3 www.speech.kth.se/wavesurfer 

Predictably, performance of correlation based classification drops 
substantially as noise increases, as occurs in C1, C2, C3. This fall 
is not so sharp for our algorithm which gets the best results for 
these three channels. 

With respect to the Gross Error measure, CDP clearly 
outperforms the rest of the algorithms, remaining robust even in 
the strong noise conditions of C3. 

Finally, regarding the statistical features (M and SD) of the 
committed error, the SRPD algorithm gets the best results for 
almost every channel, although RAPT and CDP  produce also 
close values. It is worth noticing that these magnitudes are little 
affected by noise due to the fact that gross errors are excluded 
from their calculation. 
 

Method CE(%) GE(%) M(Hz) SD(Hz) 
CDP 18.83 0.83 2.86 4.36
AM 12.20 5.88 8.74 7.93
RAPT 16.47 2.60 2.46 3.53
SHR 24.25 4.70 4.64 5.24
SRPD 18.13 3.11 2.26 3.47

Table 1. Comparison of errors for C0 channel (SPEECON db.) 
 

method CE(%) GE(%) M(Hz) SD(Hz) 
CDP 28.64 0.72 2.66 4.13
AM 32.56 15.57 9.43 8.70
RAPT 36.22 2.68 2.41 3.48
SHR 42.06 4.47 4.55 5.20
SRPD 45.18 4.04 2.29 3.48

Table 2. Comparison of errors for C1 channel (SPEECON db.) 
 

method CE(%) GE(%) M(Hz) SD(Hz) 
CDP 35.32 0.83 2.98 4.60
AM 37.12 13.93 8.72 8.54
RAPT 36.15 3.50 2.32 3.49
SHR 41.44 7.13 4.23 5.04
SRPD 53.62 4.42 2.29 3.58

Table 3. Comparison of errors for C2 channel (SPEECON db.)  
 

method CE(%) GE(%) M(Hz) SD(Hz) 
CDP 43.20 1.19 3.47 5.46
AM 52.93 17.48 10.04 9.70
RAPT 54.65 5.06 3.09 4.59
SHR 63.24 6.53 4.60 5.47
SRPD 72.57 5.60 3.36 5.21

Table 4. Comparison of errors for C3 channel (SPEECON db.) 
 

 
The second set of evaluation experiments was carried out 

employing the CSTR database, aiming to test our algorithm’s 
performance against a recognized benchmark. The results - 
presented in tables 5 to 7 - are coherent with the ones obtained in 
the tests with the equivalent cleanest channel C0 of the SPEECON 
database. The AM algorithm gets the best results in 
voiced/unvoiced classification; CDP is the best in the overall gross 
errors although it is closely followed by RAPT and SRPD. This 
last algorithm gets also the best results in the statistical 
magnitudes. 
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Method CE(%) GE(%) M(Hz) SD(Hz) 
CDP 20.53 0.85 2.22 3.27
AM 12.98 18.43 10.25 7.13
RAPT 16.83 0.90 2.24 3.01
SHR 29.28 2.80 3.96 4.04
SRPD 20.82 0.78 1.22 1.60
Table 5. Comparison of errors for male speakers (CSTR db.) 

 
Method CE(%) GE(%) M(Hz) SD(Hz) 
CDP 14.86 0.42 3.97 5.53
AM 10.53 3.96 16.10 12.14
RAPT 12.84 0.39 3.90 5.00
SHR 27.20 1.60 6.31 6.60
SRPD 13.30 0.56 3.34 4.15
Table 6. Comparison of errors for female speakers (CSTR db.) 

 
Method CE(%) GE(%) M(Hz) SD(Hz) 
CDP 17.04 0.62 3.14 4.68
AM 11.71 10.74 13.67 10.75
RAPT 14.45 0.63 3.12 4.27
SHR 27.71 2.16 5.17 5.64
SRPD 16.74 0.66 2.39 3.42
Table 7. Comparison of errors in the whole CSTR database 

 
4. CONCLUSIONS 

 
A novel pitch detection algorithm based on classical cepstrum 
calculation followed by dynamic programming has been presented. 
To evaluate its performance, a 60-minute database with 60 
speakers and containing a great variety of recording conditions has 
been used. As second evaluation the CSTR reference database was 
used. Results prove that cepstrum coefficients are superior in 
detecting pitch even in noisy conditions, provided a careful 
tracking of the pitch value is performed. The described algorithm 
has produced the best results for every channel concerning Gross 
Errors. Further improvements can be achieved by using more 
information for voiced/unvoiced detection in the clean speech 
case. On the other hand, evaluation of the algorithms for noisy 
speech should consider realistic and extensive databases to allow 
reliable comparisons. This work is a first effort to provide such 
reference. 
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