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ABSTRACT

The goal of noise compensation techniques is the perfect
reconstruction of clean features. Unfortunately, the recon-

structed features can not be assumed to be perfect. Therefore,

to improve performance, the uncertainty of enhanced speech

features should be propagated into the hidden Markov model

of automatic speech recognition systems.

This paper shows how to jointly estimate the noise and

the uncertainty (expressed by the variance) by particle filters

in the logarithmic Mel power domain and how to propagate

the uncertainty through the front-end into the hidden Markov

model. In the experimental section, improvements in word

accuracy of a large vocabulary continuous speech recognition

system are presented.

Index Terms— uncertainty of enhanced features, dy-

namic variance compensation, particle filter, noise robust au-

tomatic speech recognition,

1. INTRODUCTION

The goal of noise compensation techniques in speech process-

ing and recognition is the perfect reconstruction of clean

speech features based on an estimate of the noise sequence.

One of such techniques which has recently found their way

into the speech recognition front-end is the particle filter
(PF) [1, 2], a.k.a. sequential Monthe Carlo method. The ad-

vantage over classical methods such as spectral subtraction
or Wiener filters is the potential to track non-stationary noise.

Furthermore, no assumption of the noise distribution has to

be taken into account which is one of the mayor drawbacks of

Kalman filters where the noise distribution has to be assumed

to be Gaussian.

Even though PFs overcome some of the former mentioned

disadvantages of more traditional and widely used methods,

the noise estimate can’t be assumed to be perfect. Unfortu-

nately, most of the enhancement techniques presented in the

literature have not incorporated the uncertainty of the noise

estimate into the hidden Markov model (HMM) in particu-

lar for large vocabulary tasks. To account for the uncertainty

of the noise estimate, Arrowood [3] proposed to replace the

point observation of a speech feature by a probability density

function. Most of the shown techniques so far, however, rely

on stereo data [4], the signal to noise ratio [5] (SNR) or are

otherwise not jointly estimated by the feature enhancement

techniques.

To jointly estimate the mean and variance we propose to

use a PF framework in the logarithmic Mel power domain

which, for further processing, is propagated through the front-

end into the HMM. In the experimental section possible im-

provements are demonstrated on a large vocabulary continu-

ous speech recognition task coming along with a broad variety

of robustness and adaptation methods.

2. HANDLING UNCERTAINTY IN AUTOMATIC
SPEECH RECOGNITION

The goal of automatic speech recognition (ASR) is to find

the most likely word sequence Ŵ among all possible word

sequences W given an acoustic observation sequence x =
[x1, x2, . . .]. With Bayes’ rule we can write this equation as

Ŵ = argmax
W∈W

p(x|Λ,W)P (W) (1)

where P (W) is the prior probability that the word sequence

was uttered, and p(x|Λ,W) is the probability of the acoustic

observation sequence x given the word sequence W and the

acoustic model parameter Λ.

To account for uncertainty in the acoustic observation se-

quence, (1) has to be extended as follows [4]:

Ŵ = argmax
W∈W

(∫
x∈X

p(x|Λ,W) · p(x|θ)dx
)

P (W) (2)

where p(x|θ) represents the distribution of the uncertain

acoustic observation sequence and X represents all possible

values of the acoustic observation under the assumption that

the uncertainty in the acoustic observation is due to additive

noise (in particular its estimate) and therefore independent of

the word identities W and the model parameter Λ.

Considering a HMM with Gaussians as the output distri-

bution

p(x|Λs) = N (x; μs, Σs)
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at state s and denoting the estimated noise mean and estima-

tion error (modeled as a Gaussian distribution where the vari-

ance parameter provides a complete characterization of the

uncertainty) as

p(x|θ) = N (x; x− μn, Σn)

we can solve the integral in (2) by the well known equality

∫
N (x; μ1, Σ1) · N (x; μ2, Σ2)dx = N (μ1; μ2, Σ1 + Σ2)

as ∫
x∈X

p(x|Λ) · p(x|θ)dx =
∫
x

p(x|Λs) · p(x|θ)dx

=
∫
x

N (x; μs,Σs) · N (x;x− μn,Σn)dx

= N (x− μn; μs,Σs + Σn) (3)

From (3) it follows that the uncleaned feature x is cleaned

by subtracting the mean noise estimate μn and furthermore,

that the Gaussian variance in the HMM process is dynami-

cally compensated by enlarging the acoustic model variance

Σs associated with clean speech by the variance Σn associ-

ated with the uncertainty of the noise estimate.

3. PARTICLE FILTER BASED NOISE MEAN AND
VARIANCE ESTIMATION

To our best knowledge, Singh and Raj [6] were the first to

track the noise sequence that corrupts the speech signal by

PFs in the context of speech feature enhancement for speech

recognition. The tracked noise sequence is then used to de-

rive an estimate of the clean speech features. An ideal filter

would give a perfect estimate of the noise causing the distor-

tion in the representation space, in our case the logarithmic

Mel power domain. A real filter, however, can’t deliver a per-

fect estimate. By a small extension to Singh et al. original

proposal we are able to derive the uncertainty of the noise

estimate modeled as the noise variance.

To model the evolution of noise spectra a 1st-order autore-

gressive process is used

nt = A · nt−1 + εt

where A is the transition matrix that is learned either for a

specific type of noise or on the silence frames given by voice

activity detection, and nt denotes the noise spectrum at time t.
The εt terms are considered to be i.i.d. zero mean Gaussian,

i.e. εt ∼ N (0; 0, Σnoise). Therefore, the noise transition

probability p(nt+1|nt) can be written as

p(nt+1|nt) = N (nt+1; A · nt, Σnoise) (4)

The clean speech spectra x is modeled in the logarithmic Mel

power domain as a Gaussian mixture model

px(x) =
K∑

k=1

ckN (x;μk, Σk)

trained on speech frames only. Then, using the relationship

xt = yt + log(1− ent−yt)

between corrupted speech spectra yt, nt and xt, the likelihood

l(n(j)
t ; yt) = p(yt|n(j)

t )

of a noise hypothesis n
(j)
t can be evaluated as

p(yt|n(j)
t ) =

px(yt + log(1− en
(j)
t −yt))∏d

i=1

∣∣∣1− en̂
(j)
t,i−yt,i

∣∣∣ (5)

If the noise hypothesis n
(j)
t exceeds yt in just one spectral

bin, what can happen because noise and speech are not strictly

additive in the log domain, the likelihood p(yt|n(j)
t ) can’t be

evaluated and set p(yt|n(j)
t ) = 0.

With the above, the particle filter for speech feature en-

hancement under uncertainty can be outlined as follows:

1. Sampling
For t = 0, the noise hypotheses (particles) n

(j)
0 are

drawn from the prior noise density p(n0). Otherwise,

n
(j)
t are sampled from the noise transition probability

p(nt|n̄t−1) (4).

2. Calculating the normalized importance weights
The importance weight (likelihood) of each noise hy-

pothesis n
(j)
t is evaluated if

n
(j)
t,i < yt,i ∀ spectral bins i

according to (5), otherwise p(yt|n(j)
t ) is set to zero.

The normalized importance weights are calculated as

ω̃
(j)
t =

p(yt|n(j)
t )∑N

m=1 p(yt|n(m)
t )

3. Noise Mean and Variance Estimation
In order to estimate the mean value of the noise we have

to sum up the noise estimates according to their weights

μ̂n,t =
N∑

j=1

ω̃
(j)
t · n̂(j)

t

Similar the variance estimate — the uncertainty — can

be estimated according to their weights

Σ̂n,t = ω̃
(j)
t ·

(
n̂

(j)
t − μ̂n,t

)
·
(
n̂

(j)
t − μ̂n,t

)T
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4. Importance resampling
The normalized weights are used to resample among

the noise hypotheses n
(1 ··· N)
t → n̄

(1 ··· N)
t . This can

be regarded as a pruning step where likely hypotheses

are multiplied, unlikely ones are removed from the po-

pulation.

Those steps are repeated with t �→ (t+1) until all time-frames

of the speech data are processed.

More detail on how to infer clean speech, either by a vec-

tor tailor series or a direct approach, can be found in [7]. An

extensive discussion on PF in ASR including the handling of

PF divergence and coupling of the PF by feedback from the

ASR system can be found in [8].

4. PROPAGATING UNCERTAINTY THROUGH THE
FRONT-END

In order to make use of the uncertainty in the ASR system we

have to propagate the uncertainty through the front-end.

To transform the logarithmic Mel power domain into the

cepstral domain we have to apply a discrete cosine transfor-

mation which can be represented by a multiplication with the

matrix ADCT:

x(c) = ADCT · x(l)

To propagate the variance into the cepstral domain we have to

multiply the variance matrix with ADCT as follows

Σ̂(c)
n = ADCT · Σ̂(l)

n ·AT
DCT

Given the mean μ
(c)
x and the variance Σ(c)

x

μ(c)
x =

1
T

T∑
t

x(c)
t

Σ(c)
x =

1
T

T∑
t

(
x(c)

t − μ(c)
x

)
·
(
x(c)

k − μ(c)
x

)T

we can normalize the values in the cepstral domain by

x(n)
t =

(
x(c) − μ(c)

x

)
÷ diag

(
Σ(c)

x

)

where ÷ stands for component wise division. Similar, the

noise variance in the cepstral domain can be normalized by

Σ̂(n)
n,t =

(
Σ̂(c)

n

)
÷

(
Σ(c)

x

)2

We then reduce the dimension of 15 consecutive frames by

multiplying with the linear discriminant analysis (LDA) ma-

trix

x(s)
t = ALDA · consecutive

(
x(n)

t

)

For the noise variance we get:

Σ̂(s) = ALDA · consecutive
(
Σ̂(n)

n,t

)
·AT

LDA

5. SPEECH RECOGNITION EXPERIMENTS

In order to evaluate the improvements by the propagation

of the PF uncertainty into the HMM under realistic con-

ditions, we have chosen approximately 45 minutes of lec-

ture speech, taken from the Rich Transcription 2005 Spring

Meeting Recognition Evaluation [9], which presents signifi-

cant challenges to both modeling components used in ASR,

namely the language and the acoustic models. To perform ex-

periments on different SNRs we have artificially added, in the

time domain, dynamic noise with a broad variety of sounds

coming from a truck, slamming containers, distant voices, and

shouts [10].

Speech recognition experiments have been performed

using the Janus Recognition Toolkit (JRTk). We chose

to replace the widely used Mel frequency cestral coeffi-
cients (MFCC)s by warped minimum variance distortion-
less response (MVDR), of model order 60, cepstral coeffi-

cients [11]. They have been demonstrated to perform bet-

ter, on the given data and different SNRs, in comparison to

the MFCCs with and without PF [12]. The advantages of the

warped MVDR approach over the Fourier transformation are

an increase in resolution in low frequency regions, and the

dissimilar modeling of spectral peaks and valleys to improve

noise robustness, as noise is present mainly in low energy re-

gions. The final features of 42 dimensions were obtained by a

LDA transformation on 15 consecutive frames of 13 cepstral

mean and variance normalized features. The LDA transfor-

mation was followed by a global STC transform [13]. The

acoustic training material, approximately 100 hours, used for

the experiments reported here was taken from the ICSI, NIST,

and CMU meeting corpora, as well as the Translanguage
English Database (TED) corpus resulting in 3,500 context

dependent codebooks with up to 64 Gaussians with diago-

nal covariances each. The 3-gram language model contained

approximately 23,000 words with a perplexity of 125.

Note that the consideration of uncertainty in the HMM is

reducing the acoustic score values, since

√
(x− μs)T (Σs + Σn)−1 (x− μs)√

(x− μs)T (Σs)
−1 (x− μs)

=
Σs

Σs + Σn
< 1.0

Therefore, for a fair comparison, we have compensated for the

offset of the average acoustic score value in the uncertainty

case and furthermore worked with wide open beams to not

suffer from different pruning depth of the search tree.

Table 1 shows word errors rates (WER)s, relative word

error reduction and relative uncertainty gain defined as

RUG =
WERuncleaned −WERmean&variance

WERuncleaned −WERmean
− 1.0

For all investigated SNRs we see a clear improvement by the

enhanced features on the unadapted as well as on the adapted
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Speech Input Close Talking Speech SNR 15 dB SNR 10 dB SNR 5 dB SNR 0 dB

Pass unadp. adp. unadp. adp. unadp. adp. unadp. adp. unadp. adp.

Compensation Word Error Rate

None 31.0% 25.4% 33.3% 27.8% 37.2% 31.3% 45.5% 32.6% 57.8% 42.0%

Mean — — 31.6% 27.1% 36.7% 30.2% 43.4% 31.3% 55.1% 39.2%

Mean & Variance — — 31.4% 26.9% 36.4% 30.0% 42.9% 31.0% 54.7% 39.0%

Compensation Relative Word Error Reduction

Mean — — 5.1% 2.5% 1.3% 3.5% 4.6% 4.0% 4.7% 6.7%

Mean & Variance — — 5.7% 3.2% 2.2% 4.2% 5.7% 4.9% 5.4% 7.1%

Relative Uncertainty Gain

— — 11.8% 28.6% 60.0% 18.2% 23.8% 23.1% 14.8% 7.1%

Table 1. Comparison of word error rates, relative word error reduction and relative uncertainty gain for different compensation

techniques and signal to noise ratios (SNR)s.

passes. The adapted passes have been adapted on the cur-

rent hypothesis of the unadapted passes. The acoustic models

have been adapted by maximum likelihood linear regression
(MLLR) [14], the features have been adapted by vocal track

length normalization and constrained MLLR [13].

Considering the uncertainty of the enhanced features is

leading to further improvements in all cases over the results

obtained by the PF. In this case the average relative word error

reduction is 4.9%, which is an average relative uncertainty

gain of 19.2%.

6. CONCLUSIONS

We have presented improvements in accuracy of a large vo-

cabulary continuous speech recognition system by jointly es-

timating the noise and the uncertainty in the logarithmic Mel

power domain by particle filters and its propagation into the

hidden Markov model. In the future we want to investi-

gate more reliable uncertainty estimates and its propagation

through the front-end.
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