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ABSTRACT

This paper proposes a noise robust front-end with low 

computational cost for embedded in-car speech recognition. The 

minimum mean-square error (MMSE) estimation algorithm is 

adopted to suppress the background noise, and in the gain function 

calculation a suitable piece-wise linear function is used to 

substitute the traditional Taylor series accumulation method to 

simplify the computation complexity. After speech enhancement, 

spectrum smoothing is implemented in both time and frequency 

index with geometric sequence weights to further compensate the 

spectral components distorted by noise over-reduction. Experiments 

on Chinese isolated phrase recognition show that the proposed 

front-end significantly improves the recognition robustness in car 

environments while the computational load is extremely reduced. 

Compared with the ETSI advanced front-end, the average error 

reduction rate (ERR) of 12.2% and 4.5% is obtained in artificial 

car noisy speech and real in-car speech, respectively. 

Index Terms— speech recognition, acoustic noise, speech 

enhancement, robustness

1. INTRODUCTION

In recent years an important application of automatic speech 

recognition (ASR) technologies is to act as a voice-activated 

human-machine interface in car cabinet for navigation system as 

well as device control. These embedded ASR modules provide a 

safe and convenient input method, and usually make good balances 

between usable functionality and system complexity. Consequently, 

such hands-free devices attract many attentions and many kinds of 

mass-produced cars have been equipped. 

Among the difficulties in such in-car speech recognition tasks, the 

most critical problem is to cope with the ambient acoustic noise, 

which is incurred by mechanical oscillation of engine, friction 

between the road and tires, and aerodynamic turbulence, e.g. the air 

blowing the car body. Noise robustness is the common challenge 

to ASR systems. Many approaches have been proposed for this 

issue [1] and can be roughly classified into two categories. 

Methods in the first category aim at designing a robust front-end in 

which the acoustic feature is inherently less distorted by noise [2] 

or the interfering noise is removed by using feature compensation 

[3] or speech enhancement methods [4][5]. Due to the high non-

linearity introduced by mathematic transforms in feature extraction, 

feature compensation methods usually need stereo data to estimate 

the statistical models or mapping function parameters [6][7]. 

Whereas for enhancement methods performed in signal space, the 

relation between noise and speech can be simplified and the clean 

speech can be estimated accurately based on some reasonable prior 

statistical hypothesis [8][9]. Robust methods in the second 

category concentrate on model adaptation in which the mismatch 

between noisy speech features and the pre-trained acoustic models 

is compensated [10][11][12]. Generally, model adaptation methods 

use more prior statistical information of speech and are superior to 

those that extract robust features, but their major disadvantage is 

that they usually cause huge computational load. Besides, the less 

dependency between the front-end and the recognizer can 

effectively reduce the complexity of ASR systems. 

This paper proposes a robust front-end based on cepstral feature 

extraction framework, in which MMSE estimation algorithms [8][9] 

are used to suppress the noise in frequency domain. Compared to 

other conventional speech enhancement algorithm, such as spectral 

subtraction [4], the MMSE estimation method is more efficient in 

minimizing both the residual noise and speech distortion. 

In MMSE estimation algorithm, the gain function is calculated by 

Taylor series accumulation method, which results in the huge 

computational load and is the weakness of MMSE estimator 

especially for embedded ASR systems. Storing the pre-calculated 

function values in a lookup table is a common solution, but the 

large extra memory cost still restricts the application in such 

resource-limited situations. In this paper we propose to use a 

proper piece-wise linear function to substitute the gain function 

according to the derivative difference and approximation error. 

Thus, the computational load can be extremely reduced, while the 

same noise reduction performance is maintained. 

In speech enhancement, some spectrum components at very low 

signal-to-noise ratios (SNR) tend to be floored by meaningless 

threshold in Mel-scaled filter binning stage because of the noise 

over-reduction. Even not floored, these spectrum components are 

prone to aggressively degrade the recognition performance. We 

propose to smooth the spectrum in both time and frequency 

indexes with geometric sequence weights. Thus, those unreliable 

spectrum components will be fed with speech energy from 

neighboring bins with high local SNRs, and the recognition rate 

can be efficiently improved. 

The rest of the paper is organized as follows. Section 2 describes 

the MMSE estimation algorithm and the approximation of the gain 

function. Section 3 introduces the spectrum smoothing algorithm.  

Section 4 and 5 describe the experiments in details. Finally, section 

6 concludes the paper. 

2. NOISE REDUCTION ALGORITHM 

2.1.  MMSE estimation algorithm

Ephraim and Malah proposed the short-time spectral amplitude 

(STSA) estimation algorithm with a MMSE criterion for the linear-

spectra (LinMMSE) [8] or the Log-spectra (LogMMSE) [9]. One 

advantage is that MMSE estimation algorithm can efficiently 
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suppress the background noise while at the expense of very few 

speech distortions. Another property of this method is that the 

residual “musical noise” can be efficiently eliminated. In resent 

extensive subjective comparison among the representative speech 

enhancement algorithms [13], the above statistical-model based 

methods perform the best.  

It is assumed in the prior statistical hypothesis that the noise is 

additive and uncorrelated to the clean speech, and after fast Fourier 

transform (FFT) analysis of windowed speech frames each spectral 

component is statistical independent and corresponds to a narrow-

band Gaussian stochastic process. Let A(k, n), D(k, n) and R(k, n)

denote the kth spectral component of the nth frame of speech, noise, 

and the observed signals respectively, the estimation of A(k,n) in 

LinMMSE algorithm is given as 
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For LogMMSE algorithm the estimation of A(k,n) is given as 
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where c=0.57721566 is the Euler constant, the a priori SNR 

k and the a posterior SNR k  are defined as follows: 
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In Eq.(4)  and  are the multiplicative factors which are tuned to 

control the balance between noise reduction and speech distortion, 

thus the implementation of MMSE estimation algorithms are 

optimized towards ASR tasks. In the experiments the optimum 

values for LinMMSE are =1.00 and =1.05, and for LogMMSE 

=1.60 and =2.13, respectively. In practice, we use a voice 

activity detection (VAD) based noise estimation method and 

substitute the estimation of clean speech by the enhanced spectra 

of previous frame. 

2.2.  Approximation of the gain function in MMSE estimation 

From Eq.(1)-(3) we can find that the gain function in LinMMSE or 

LogMMSE is calculated by Taylor series accumulation, which 

leads to a huge computational load and is a weakness of MMSE 

estimation algorithm especially for resource-limited embedded 

ASR platforms. To solve this problem, we propose to use a piece-

wise linear function to substitute the Taylor series accumulation in 

the gain function. We take the approximation in LogMMSE 

algorithm as the example and describe in details as follows. 

In Eq.(3) let us suppose (1 )k k kv  and define  

1

1 ( 1)
( ) exp{ ( ( ) )
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r
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r k

h v c
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Then, a suitable piece-wise linear function pwlf(v) including n

segments is designed to approximate the function ( )h v  with 

0 40v (when v>40, ( ) 2 (1 )k k kh v ): 

Fig. 1 Approximation of the gain function by piece-wise linear function 
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where ( )il v  is the ith linear function between the (i-1)th and the 

ith segmentation points of ( )h v ,denoted as 
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Regarding the function h(v) as the standard whose value is pre-

calculated by Taylor series accumulation, we adopt the following 

steps to construct the piece-wise linear function as taking into 

account the derivative range of h(v) and the approximation errors: 

Step 1: Add initial segmentation points, which satisfy that the 

difference of the derivative of h(v) between two consecutive 

points is smaller than Td ;

Step 2: if the difference between h(v) and pwlf(v) is greater 

than Te, then insert new points in the corresponding two 

consecutive segmentation points; 

Step 3: repeat Step 2 and update pwlf(v).

The above procedures are illustrated in Fig. 1 and in practice 

totally there are only 14 segments of linear function to approximate 

the gain function. It is obvious that the computation load is greatly 

reduced by using the proposed method. 

3. SPECTRUM SMOOTHING TECHNOLOGY

The MMSE estimation algorithm can be interpreted as it 

suppresses or emphasizes the spectral components according to 

their local SNRs. The speech signals in those components at very 

low SNRs will be seriously distorted due to the noise over-reduction.

Our proposed front-end is based on the framework of cepstral 

feature extraction, in which a threshold is usually essential to 

eliminate the sensitivity of logarithmic transform to very small 

outputs of the Mel-scaled filters. Thus, after speech enhancement, 

those low SNR spectrum components tend to be floored by a 

meaningless threshold in Mel-scaled filter binning stage, which 

causes the mismatch between the features and the acoustic models. 

Even over the thresholds, the low SNR components are also prone 

to aggressively degrade the recognition performance. 
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Fig. 2 Spectrum smoothing in time and frequency index 

In order to compensate the spectrum components distorted by 

noise over-reduction, we propose to smooth the spectrum in both 

time and frequency index with symmetric normalized geometric 

sequence weights. The unreliable spectrum component will be 

filled with speech energy from neighboring bins whose local SNRs 

are high and avoid being floored in binning stage, consequently. 

Thus, the implementation of MMSE enhancement is tamed 

towards ASR tasks and the recognition performance is efficiently 

improved further. 

At frame n and frequency band k, the smoothed spectrum 

component ( , )A k n  is obtained as follows:

' '

ˆ( , ) ( ) ( ) ( , )
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F T

i L j L

F F T T T T F F

F T

F T
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where ( )
F

w i  is the geometric sequence weight with 0.5 common 

ratio in the frequency index with smoothing length 2 1
F

L :
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F

w is the 

weight of current frequency bin. ( )
T

w j  and 
T

W  are the 

smoothing weights in time index and have the similar definitions. 

The matrix
F T

A corresponds to the spectrum block that is used for 

smoothing. As illustrated in Fig.2, in Eq.(8) the expression in 

matrix multiplication style indicates that we can firstly smooth the 

spectrum in frequency index and then in time index, or 

equivalently reverse the order. The common ratio is equal to 0.5, 

which can greatly reduce the complexity in digital computation. 

4. EXPERIMENT SETUP 

4.1.  Front-end configurations 

In the experiments, the speech data are sampled at 11025Hz and 16 

bits quantization. The frame length and window shift are 23.2ms 

and 11.6ms, respectively. In spectra processing, after MMSE 

speech enhancement and spectrum smoothing, 24 triangle Mel-

scaled filters are applied to combine the frequency components in 

each bank, and the outputs are compressed by logarithmic function. 

After the discrete cosine transform (DCT) decorrelation, the final 

33-dimensional feature vector consists of 11 Mel frequency 

cepstral coefficients (MFCC) and their first and second order 

derivatives. To compare wit ETSI advanced front-end (ETSI_AFE) 

[5], we also develop a platform for evaluations on the 8KHz 

sampling-rate speech data. 

Fig. 3 Comparison of computational cost

4.2.  Speech database and Acoustic model 

Shanghai accented Mandarin database [14] is used to establish the 

isolated phrase recognition experiments to evaluate our proposed 

methods. We use 20000 utterances for training and 200 for 

evaluation. We adopt the model structure with moderate complexity, 

in which each Mandarin syllable is modeled by a right-context-

dependent INITIAL (bi-phone) plus a toneless FINAL (mono-

phone). Totally, there are 101 bi-phone, 38 mono-phone and one 

silence hidden Markov models (HMM). Each model consists of 3 

emitting left-to-right states with 16 Gaussian mixtures. 

To improve the robustness of ASR system we use an immunity 

learning scheme [15] in which the acoustic models are trained in 

simulated noisy environments by artificially adding car noises to 

clean training utterances at different SNRs. There are 12 kinds of 

car noises in the experiments, which are the combinations of the 

following three conditions: 

(1) Speed (km/h): 40, 60 and 100 

(2) Road type: “asf” (asphalt), “tun”(tunnel) and “con” (concrete) 

(3) Air-conditioner state: on/off. 

4.3.  Real in-car evaluation speech data 

To evaluate the proposed front-end in realistic scenarios, in-car 

Mandarin speech data are collected from native speakers in 

Shanghai city. The speech is recorded in the car cabinet through a 

distant microphone placed in the roof lamp under idling or driving 

(speed is around 100km/h) conditions. 

5. EVALUATION RESULTS 

5.1.  Evaluations on artificial car noisy speech 

Twelve car noises described in section 4.2 are used to generate the 

artificial evaluation noisy speech with the SNR from –5dB to 20dB. 

In Fig. 3 we estimate the computational cost in MMSE gain 

function calculation by counting the floating-point operations of 

addition/subtraction (Add/Sub), multiplication (Mul) and division 

(Div). It is obvious that the proposed piece-wise linear function 

approximation method (PWLF) significantly reduces the 

computational cost compared with Taylor series accumulation 

method (TSC), e.g. in LogMMSE estimation algorithm it saves 

about 72%, 94% and 93% computational cost in Add/Sub, Mul 

and Div operation, respectively.  

In Fig. 4 we compare the recognition performance of different 

front-end schemes. We take the standard MFCC as the baseline for 

reference. Fig. 4(a) shows the WER averaged by 12 car noises at 

each SNR.  We can observe that the baseline performance drops 

drastically when SNR is below 10dB. Applying the MMSE 

estimation algorithm significantly improves the robustness when 

compared with the baseline and it is very obvious that the spectrum 

smoothing algorithm further improves the recognition performance. 

For simplicity we only illustrate the improvement when spectrum 

smoothing is applied to LogMMSE algorithm, which gives the best 

performance in the experiments. The LogMMSE_Smooth scheme 

obtains the average ERR of 73.2% versus the baseline. 
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Fig. 4 Evaluation results in artificial car noisy environments 

Fig. 4(a) also gives the performance of MMSE algorithm with TSC 

and PWLF calculation methods, respectively. We can find that 

using the proposed PWLF method can keep the identical recognition 

performance as TSC method while the computational cost is 

extremely reduced.  

Because of the logarithmic operation in cepstral feature extraction, 

applying the MMSE criterion in log-spectra is better than in linear-

spectra. Thus, the LogMMSE algorithm performs better than the 

LinMMSE algorithm as illustrated in Fig. 4(a) and Fig .4(b). When 

compared with ETSI_AFE, the LogMMSE_Smooth scheme obtains 

the average ERR of 12.2%. 

Fig. 4(c) gives the WER averaged by the six SNRs, from which the 

performance difference under each car noise is analyzed. We find 

that the recognition performance in air-conditioner on and high 

speed driving conditions is obviously lower than in the opposite 

conditions. The reason is that ASR performance tends to be 

degraded more seriously by broadband noises. In such adverse 

environments mentioned above the dominant noise source is the air 

friction from the air-conditioner and the wind outside the car, 

which produces the broadband white-like background noises and 

consequently causes dramatic performance drop on recognition. 

The experimental results also show that the proposed front-end can 

significantly improve the performance in all conditions. 

5.2.  Evaluations on real in-car speech 

The proposed front-end is also evaluated on real in-car speech 

database, as showed in Fig. 5. There are 1549 utterances in idling 

state test set and 1560 in driving state test set, respectively. From 

the experimental results, it can be concluded that the proposed 

front-end efficiently improves the robustness for real in-car speech 

recognition task and achieves the average ERR of 20.4% and 4.8% 

versus the baseline and ETSI_AFE, respectively. 

6. CONCLUSIONS

This paper presents a robust front-end for embedded in-car speech 

recognition. The MMSE estimation algorithm is utilized to suppress 

the background noise and the gain function is approximated by a 

piece-wise linear function to simplify the computation complexity. 

A spectrum smoothing algorithm is proposed to further compensate  

Fig. 5 Evaluation results in real in-car speech recognition 

the noise over-reduced spectra components after speech 

enhancement. It can be concluded from the evaluation results that 

the proposed front-end can efficiently improve the robustness 

against car noise while with low computational cost. 
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