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ABSTRACT

The difficulty of ASR under non-stationary noise conditions is a
major contributing factor hindering the widespread deployment of
ASR systems. Bottom up techniques such as speech noise
separation and top down methods to adapt the acoustic model to the
environment have been applied to address the issue. The missing
data approach to ASR improves upon existing techniques basing
recognition solely on the reliable components of the signal and has
been demonstrated as an effective method to handle non-stationarity.
Proposed in this paper is a novel technique whereby ASR using
missing data theory under non-stationary noise conditions is
improved by use of a fusion of models at the decision level. This
fused model introduces more resilient features to the missing data
decode process. The fused decoder is found to significantly increase
recognition performance over conventional missing data techniques.
A major finding in this paper is when the fused decoder exhibits the
fusion of bottom up and top down processes. Under this condition,
the proposed combination of recognizers technique is found to
outperform all other tested ASR systems.

Index Terms—Speech recognition, Speech processing, Hidden
Markov models, Pattern recognition, Time Series

1. INTRODUCTION

Over the past few decades great progress has been made in
improving speech recognition with Automatic Speech Recognition,
ASR, systems. In processing clean speech, systems have been
designed which produce near perfect results. Even under some
controlled noisy conditions, ASR systems can prove to be highly
accurate. This is especially true when the corrupting variations can
be considered to be stationary. Common techniques used for these
conditions include Cepstral Mean Subtraction, CMN and
RASTA[1]. However, a limiting factor to widespread deployment of
ASR based systems is in handling the majority of the noise
conditions, when the comrupting factors are non-stationary. Recently,
ASR using Missing Data, MD, techniques has been proposed as a
method for noise robust ASR under all naise conditions.

The use of missing data techniques in ASR is based on the
premise that recognition should only be conducted upon speech
bearing components of a signal. The underlying principal relies on
evidence on how the human auditory system is believed to perceive
and process speech. Here all composite signals bearing both speech
and noise are segregated and processed individually. Spectral
features are used with standard missing data ASR, though, spectral
based features for HMM based ASR systems are known to be
deficient in resiliency to slight perturbations. Theses features are
used within MD systems due to its representation maintaining a
level of detail necessary for auditory source separation, the central
premise of missing data theory. Mel-frequency Cepstral Coefficient,
MFCC, features have been established to be well suited for HMM

1-4244-0728-1/07/$20.00 ©2007 IEEE

IV - 1041

based ASR. Inherent to the mel-frequency transformation process
statistical variations are removed, thus allowing a more robust HMM
representation. Unfortunately, the use of MFCC based features in
missing data theory based ASR systems has not been suitable due to
"smearing" of localized uncertainties globally in the auditory signal.
Thus the very characteristic that allows MFCC features to be well
suited for HMM based systems hinders their use in missing data
theory.

This paper proposes a method to enhance speech recognition
performance using missing data techniques for non-stationary noise
conditions by incorporating more resilient feature sets into the
decoding process. Within this process, the effects of the introduction
of resilient features and noise compensation techniques to the MD
ASR decode process are realized. This is accomplished by the
creation of two separate HMM based models, one using spectral
features, the other MFCC features. The statistical dependencies
found in the models are based upon a coupled HMM methodology,
the Fused HMM model[2]. This fusion of features and combination
of recognizers, one using standard ASR techniques, the other
missing data based, is demonstrated in this work to significantly
increase recognition performance when speech bearing signals are
corrupted by non-stationary additive noise. This is particularly
evident when the fused decoder exploits the fusion of a noise
compensated acoustical model and the standard MD model. Under
this condition, the proposed combination of recognizers technique is
found to outperform all other tested ASR systems.

There exist a plethora of research into enhancing ASR with
missing data theory. The majority of the approaches have
concentrated on improving the separation of speech from noise prior
to the decode process. Soft masks[3] have been developed to assign
probabilities to each component within the source segregation mask
prior to decoding. More sophisticated methods have been applied to
aid in segregation of speech from noise such as employing auditory
scene analysis techniques[4]. With regard to improvements to the
MD decoding process, the Multisource decoder[5] has been
proposed where the auditory signal is broken into fragments and the
best hypothesis is based upon finding the best word match and the
best segregation of speech from noise. The feature fusion technique
has been applied to improve recognition performance using both
spectral and MFCC based features under Stationary additive noise
conditions[6]. This paper does not address improving segregation of
signals to increase recognition performance, rather it proposes a
method to enhance recognition performance by utilizing statistical
dependencies between MD theory spectral HMM models and
traditional MFCC based models to produce an improved fused
acoustical model. This exploitation of complementarity[7]
information between the two models is demonstrated to significantly
increase recognition performance.

The structure of this paper is organized in the following manner.
First, approaches to enhance ASR recognition performance under
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non-stationary noise conditions is presented outlining existing
methods and the approach presented in this paper. Next the
proposed feature fusion, combination of recognizers, method is
detailed and described as how to be applied to increase recognition
performance with missing data techniques. A series of experiments
that were conducted to demonstrate the application of the proposed
method is described, followed by the results fom those experiments.
Finally, conclusions and directions for further research are
discussed.

2. FUSION OF FEATURES AND COMBINATION OF
RECOGNIZERS

2.1. Non-Stationary Noise Robust ASR

Established methods for achieving noise robust ASR involving
noise/speech separation generally take on the form of one of two
methodologies. Ones that attempt to compensate for distortions
found in signals by the extraction of the clean signal prior to
recognition by the ASR decoder can be regarded as a bottom-up
approach. The second method of designing a system for handling
non-stationary noise perturbations is developed from a top down
model basing noise robust ASR as a pattern recognition problem.
The bottom-up approach is designed to segregate the noise from the
speech to match with the acoustical models of the ASR system. The
top-down approach attempts to produce a matched system. A
matched system has acoustical data or models which are identical to
that of the acoustical characteristics of the input sequence. If the
recognition task is such that the input conditions are constant, then
the acoustical models may be trained in that environment. Under
variable input acoustical conditions, more realistic, a matched
system may be achieved through the use of techniques which base
recognition on the acoustical model transformed by the given noise
source. Such methods which transform acoustical models are the
HMM Decomposition[8] and Parallel Model Combination[9], PMC
methods.

With regard to ASR using missing data techniques for non-
stationary noise conditions, both bottom-up and top-down
approaches have been investigated. Bottom-up approaches consist
of generating a segregated noise mask employing spectral
subtraction, soft-mask generation, and auditory scene analysis.
Recently, a top-down noise compensation technique, equivalent to
the highly successful CMN normalization in the cepstral domain,
has been proposed for convolutional noise[10]. The multisource
decoder, developed specifically to enhance recognition performance
under non-stationary conditions, utilizes both bottom-up and top-
down methods to find the best hypothesis word sequence and
segregation. The proposed method in this paper approaches
increasing recognition accuracy using MD techniques in a novel
perspective. In this procedure, the resiliency of the model used in
the decode process is elevated. This is achieved by means of using
additional feature sets which add complementarity information to
the viterbi search space in determining the best hypothesis word
sequence.

2.2. Proposed Methodology

ASR with missing data theory consists of three major components,
namely, feature extraction, segregation and the decoder. HMM
models created with use of spectral based features, though, cannot
be fully representative of the auditory characteristics when modeled
by the typical diagonal covariance matrix. Even with the addition of
multiple mixtures per model, the robustness of such a model does
not achieve the accuracy of its MFCC based counterpart. Thus there
is a case for incorporating the use of these resilient features in the
MD ASR process. The proposed method addresses this issue by

presenting a procedure whereby the benefits of ASR with missing
data techniques can be combined with the robustness of standard
ASR systems. This is accomplished with use of the combination of
recognizers. The combination of recognizers is formed on the
premise of the fusion of features at the decision level. Decision
level fusion permits the contributions of each separate stream of
features to be realized in the decode process. The chosen method of
decision level fusion is conducted as the stochastic modeling of
coupled time series. With the combination of recognizers approach
MFCC derived features from an auditory signal can be incorporated
into a missing data theory based ASR system using a coupled HMM
methodology. For this model, several different coupled HMM
models were considered. The most accommodating was found to be
the Fused HMM model[2].

The fused HMM model models the relationship between HMMs
using a probabilistic fusion model. With this method, optimal HMM
connections are made using the maximum entropy principal and
maximum mutual criterion for selecting dimension reduction
transforms.  Using the maximum entropy principal, the joint
distribution between observations of two time series, O and O®
and hidden states U® and U® respectively is defined to be,

S A AV— (A LW, V)
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The optimal HMM connections are found by the determination of w
and v with the application of the maximum mutual information
criterion. Here it is found that with the relation,

I(f(x),p)=I(x,y) @)
the optimal HMM connections are between the observations of one
HMM model and the hidden states of the other. The resulting
expression describing the statistical dependencies between two
HMM processes is thus,

(0" 0%)=p(0") p(0”U") 3
and,

“4)

Fig. 1: Coupled Fused HMM

The resulting Fused HMM model composed of two HMM processes
is depicted in Fig. 1 illustrating the interconnections between the two
models.

Using the fused HMM model, the combination of recognizers
technique permits MFCC derived features from an auditory signal to
be incorporated into a missing data theory based ASR system. The
acoustic model created with MFCC derived features and the model
created with traditional missing data theory techniques, spectral
features, are fused together to create an optimal model. Recognition
is then performed by the combination of recognizers by generating
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both spectral and MFCC features from an input auditory signal and
decoded with the fused HMM decoder.

3. EXPERIMENTS

3.1. Baseline Recognizer

A baseline recognizer was created with the Grid Corpus[11]. All
experiments conducted in this paper are formed from the creation of
a HMM based recognizer consisting of 51 words as depicted in Fig.
2.

command | color preposition | letter number | adverb

bin (b) blue (b) at(a) A-Z 1-9and | again (a)
lay () green (g) | by(b) excluding W zero (z) | now (n)
place(p) |red(r) in (i) please (p)
sct (s) white (w) | with (w) soon (s)

Fig. 2: Corpus Vocabulary

Word level CDHMM models were used consisting of 2 states per
phoneme in accordance with the CMU pronunciation dictionary.
Each state within the model was composedof 32 Gaussian Mixtures.
Training of the recognizer was conducted using 17000 unique
sentences from 17 different speakers with 1000 sentences generated
from each speaker. Within the corpus, each utterance was composed
of 6 words with the grammar corresponding to Fig. 3.

r$verb:bin\lay|place]set;

Scolour=blue|green|red|white;

Sprep=at |by|in|with;
$letter=a|blcldlelfiglhli|j|k|lImn|olplglris|tiulvixlylz;
Snumber=zero|one|two|three|four|five|six|seven|eight|nine;
Scoda=again|now|please|soon;

($verb sp S$colour sp $prep sp $letter sp $number sp $coda)
Fig. 3: Corpus Utterance Grammer

Three acoustic models were constructed using the training
corpus. The first, a spectral ratemap based model. The others
cepstral domain, MFCC based models. Feature vectors used for the
spectral model consist of ratemaps produced by passing the auditory
signal through a bank of 32 Gammatone Filters with center
frequencies spaced linearly in ERB-rate from 50Hz to 3850Hz. The
envelope of the output from each filter was smoothed with an 8ms
time constant and sampled at a frame rate of 10ms. The cepstral
based models used were composed of 39 dimensions consisting of
energy, delta and acceleration coefficients. All CDHMM acoustic
models were constructed using the HTK Toolkit[12].

3.2. Experiments Setup
A speech recognizer was setup to analyze recognition results from a
testing corpus using spectral, cepstral and the proposed combination
of recognizers, COR, fusion, based features. The testing corpus
consisted of 560 utterances generated by 14 different speakers of
which 40 contributed from each speaker. The speakers used in the
testing corpus are independent to that used in the training set. The
recognizer was setup in 8 different configurations to perform ASR
with,

I.  spectral, ratemap featumes, rate32

II.  cepstral features, MFCC

III. cepstral features with normalization, CMN

IV. ratemap using missing data techniques, MD

V. COR, rate32+MFCC

VI. COR, rate32+CMN

VII. COR, MD+MFCC

VIII.COR, MD+CMN
The experiments to determine the gain in speech recognition
performance using the combination of recognizers and feature fusion
proposed method over conventional MD techniques for non-

stationary noise conditions were conducted in the following manner.
The testing corpus was corrupted with additive non-stationary noise
with various SNRs to form test sets. The noise source was taken
from the NOISEX[13] database and consisted of the Factory Noise I
source. The noise source was added to the testing corpus to form 3
separate test sets of SNRs being 18dB, 12dB and 6dB. The choice
of the noise source was to demonstrate the performance of the
proposed method for an extreme example of nonstationarity noise.

3.3. Results
The results from running the recognizer in configurationsI to III and
V to VI with the clean speech test corpus is illustrated in Table I. A
thorough analysis of the fused decoder results with clean speech is
addressed in a prior paper[6].

TABLE 1. BaseLiNe ReEcogNizer Resurts, CLEAN DAta

ASR Configuration Recognition Accuracy, %

FCC 95.15
FCC CMN 81.49
Spectral Features, rate32 94.64
FCC+rate32 94.04
FCC CMN-+rate32 95.22

Under non-stationary noise conditions, Table II depicts recognition
results with the recognizer in configurations I to IV and VII to VIII
with the test corpus corrupted with additive Factory noise
respectively at all tested SNRs. For higher SNRs the recognizer

TABLE II. Recognition Resurts With Test Corpus + Factory NoISE

SNR 18 dB| SNR 12 dB | SNR 6 dB
IMFCC 83.33 73.9 64.7
[Conventional IMFCC CMN 66.0 61.6 60.3
[Spectral Features, MD 76.5 73.3 67.4
Proposed Method [COR, MFCC+MD 84.5 76.7 67.5
ICOR, MFCC CMN+MD 88.6 81.8 73.5

configured with MFCC features outperforms the recognition
accuracy achieved using classical MD techniques. As the SNR is
decreased, the benefits of ASR with MD is realized as found with
the 6dB conditions, the recognizer using MD techniques surpasses
accuracies derived from MFCC features. The acoustic model for the
MFCC based recognizer is not able to properly describe all of the
auditory input conditions for lower SNRs and thus recognition
accuracies decline more rapidly than that of the recognizer using
MD theory. Using the COR technique to base recognition upon both
MFCC and spectral features, the accuracies achieved exceed or
match those by just MD alone demonstrating the validity of
enhancement by use of complementarity information in the decode
process. As the SNR decreases the MFCC acoustic model no longer
accommodates the characteristics inherent to the input signal, thus
there exists less improvement with the COR technique. In this case,
the MFCC acoustic model contributes less complementarity and
more supplementarity[7] information to the decode process. In
contrast, recognition using noise robust techniques such as top down
modeling, to adapt the acoustical model for the input auditory
conditions, in this case normalization, greatly enhances recognition
performance in conjunction with MD techniques. This is evident
over all tested noise conditions. In this mode, both bottom up and
top down techniques are used to achieve noise robust ASR under
non-stationary noise conditions. Bottom up in terms of segregation
of noise from speech prior to decoding only the reliable components
in the signal. Top down employed by means of normalization using
the global mean of the signal to compensate the model to the
variable acoustical condtions.

Tables III to V depict the performance of the recognizers
rankings on a per utterance basis for configurations of interest with
each of'the three test sets. The rankings are based upon the
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recognition accuracy obtained by the ASR of each utterance with the

recognizer in configurations II to IV and VII to VIII. From
examination of each recognizer performance, one can deduce that

TABLE III. RecogNizEr CONFIGURATION RANKINGS OVER ENTIRE TEST
Set, 18dB SNR, ReLaTive To ALL EXPERIMENTED CONFIGURATIONS

ASR Configuration # utterances Top Ranked % Top Ranked #utterances Bottom Ranked %Bottom Ranked

Missing Data 109 19.64 161 29,1
(CORMFCC 2| 414 % 541
CORCMN | 70.2] 16 288

TABLE IV. RecogNizer CONFIGURATION RANKINGS OVER ENTIRE TEST
Set, 12dB SNR, ReLative To ALL ExpERIMENTED CONFIGURATIONS

ASR Configuration # utterances Top Ranked % Top Ranked #utterances Bottom Ranked %Bottom Ranked

Missing Data 14) 2559 139 2505
CORMFCC 193 U1 00) 1081
COR CMN 3 09.01 29 523

TABLE V. RecooNizer CoNFIGURATION RANKINGS OVER ENTIRE TEST
Set, 6dB SNR, ReLarive To ALL ExpERIMENTED CONFIGURATIONS

ASR Configuration # utterances Top Ranked % Top Ranked #utterances Bottom Ranked %Bottom Ranked

Missing Data 189 303 181 3.6
CORMFCC 161 29.0] 138 24.86
CORCMN 368 66.31 54 9.73

using the proposed method does not degrade the performance
established by standard MD techniques. The number of utterances
that are ranked the lowest when compared to all tested recognizer
configurations shows the fusion technique to consistently be less
than that of processing with MD. The COR technique has a
profound effect on influencing the increase in recognition
performance when decoding with the fused information from noise
compensated cepstral features and MD techniques. This is evident
upon examination of the number of utterances that have been
recognized the most accurate by each recognizer.

Here it must be stated that the results obtained using the
proposed technique addresses concerns raised in previous attempts
to enhance the decoding by means of Data Imputation[14]. One of
the findings was that normalization in conjunction with MD using
marginalization degraded recognition performance. Demonstrated
in the results presented with the combination of recognizers
technique, ASR using MD with marginalization is significantly
enhanced when fused with a noise compensated model.

The combination of recognizer technique in the configuration of
the fusion of the MD decode process with complementarity
information from a normalized cepstral model is found to
significantly increase ASR performance. This configuration has
been presented to be akin to the combining of a bottom up process
and top down process to address the non-stationary noise condition.
Currently there exists one other approach that advances ASR using
MD techniques using a combination of these two processes, the
fragment decoder[S]. Whereas the multisource decoder finds the
best hypothesis word sequence and segregation of noise from
speech, the combination of recognizers finds the best word sequence
using a fused decoder. This fused decoder exploits the statistical
dependencies between an adapted acoustic model and an MD
marginalized decode process. Like the multisource decoder
exhibiting significant gains in recognition performance when
subjected to non-stationary noise conditions, the COR with CMN
and MD performs especially well under these conditions. This is
clearly illustrated by comparing the results presented in this paper
with COR under stationary noise conditions[6].

4. CONCLUSIONS

Recognition accuracy of ASR using missing data techniques under
non-stationary noise conditions is improved using the proposed
combination of recognizers technique. Recognition is improved or
matched with the use of resilient MFCC based feature sets fused
with the MD decode process. Under conditions where a noise
compensated model is used in conjunction with standard MD
techniques significant performance gains are realized. Specifically,
as outlined in the paper, this occurs when the combination of
recognizers is configured using CMN within the fused decoder. This
configuration establishes the use of both bottom up and top down
ASR techniques and proves to be highly successful. Future work
will entail improving upon speech enhancement of the input signal
by means of using more sophisticated segregation techniques. This
shall improve upon the missing data decode process within the
combination of recognizers technique. Investigations will also
conducted in incorporating additional noise compensation
techniques to build upon the results presented in this paper.
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