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ABSTRACT

When designing noise robust speech recognition feature
extraction algorithms, it is common to assume that the noise
and speech signal are uncorrelated. This assumption allows
the cross correlation terms to be ignored in the equations that
describe the operation of these algorithms, thus making the
mathematics more tractable. In this paper, we investigate the
validity of this assumption in the context of the Autocorre-
lation Mel Frequency Cepstral Coef cient (AMFCC) feature
extraction algorithm. To carry out the investigation, we de-
signed a modi ed AMFCC algorithm that forces the cross
terms in the noisy signal autocorrelation equation to be zero.
We then compared the performance of the modi ed algorithm
to the un-modi ed algorithm in recognition experiments per-
formed using the AURORA II database. From these evalua-
tions, we show that the assumption is fair in 5 out of six tested
noise cases. The difference in recognition accuracy between
the AMFCC and modi ed AMFCC for these ve noises was
less than 5%.

Index Terms— Robust speech recognition, feature ex-
traction, autocorrelation function

1. INTRODUCTION

For Automatic Speech Recognition (ASR) systems to be prac-
tical they need, among other factors, a level of robustness to
changes in the speaking environment. One of the environ-
mental changes that has a large impact on the performance
of current ASR systems is background noise. There are sev-
eral approaches that one can take to improve an ASR systems
robustness to changes in background noise. One of these ap-
proaches is to address the problem at the feature extraction
stage of the system. That is, to use a speech feature extrac-
tion algorithm that produces features that are as invariant as
possible to background noise changes, while simultaneously
capturing the salient speech information.

Many feature extraction algorithms have been proposed
that are designed speci cally to have a low sensitivity to back-

ground noise [1, 2, 3, 4, 5, 6, 7]. When designing such algo-
rithms, assumptions are typically made about the noise sig-
nal. This is generally done to make the mathematics more
tractable. One such assumption that is commonly assumed
is that the speech signal and disturbing noise signal are un-
correlated. The impact of this assumption on algorithms that
perform processing in the autocorrelation domain can be de-
scribed as follows. Assume we have a short-time segment of
uncorrupted speech s(n) and a noise signal d(n) that are both
wide-sense stationary. A corrupt speech signal x(n) can then
be formed if we assume d(n) is an additive noise, therefore
x(n) = s(n) + d(n). If we assume nothing further, the auto-
correlation of the noisy signal x(n) is,

Rxx = Rss + Rdd + Rsd + Rds
︸ ︷︷ ︸

cross terms

(1)

From this equation, we can see that the autocorrelation is
composed of Rss, which is the autocorrelation of the clean
speech signal alone, Rdd, which is the autocorrelation of the
noise signal alone and two cross correlation terms. Typically
we further assume that the speech signal and noise signal are
uncorrelated. This has the effect of removing the cross corre-
lation terms from the autocorrelation of the noisy speech sig-
nal. Therefore, the autocorrelation of the noisy speech signal
simpli es to,

Rxx = Rss + Rdd (2)

If we use the uncorrelated assumption (2) we can pro-
ceed to design feature extraction algorithms by considering
the properties of the speech signal and noise signal in isola-
tion. For example, if the speech signal gives non-zero coef -
cients at all lags in the autocorrelation domain and the noise
signal gives coef cients concentrated in the lower-lags, we
can design a noise robust feature extraction algorithm by us-
ing only the higher-lags of the autocorrelation sequence to
compute the speech features. This view of the signal and
noise relationship in the autocorrelation domain is what mo-
tivated us to design the Autocorrelation Mel Frequency Cep-
stral Coef cient (AMFCC) [1] method for feature extraction.
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In this paper, we test the assumption that the cross corre-
lation between a speech signal and noise signal is negligible
enough that its effect can be ignored when designing noise
robust speech recognition features. To test this assumption
we use two versions of the AMFCC algorithm. One version
is the un-modi ed algorithm that has all the cross correlation
terms included and the other version is a modi ed algorithm
that has all of the cross correlation terms removed. We also
designed an arti cial noise that can be described as a repeat-
ing chirp noise. If the cross terms in the un-modi ed AMFCC
algorithm are zero, then the AMFCC algorithm should be im-
mune to this noise signal. Five other more typical noises are
also included in the evaluation. These include four natural
noises from the AURORA II database (subway, babble, car
and exhibition) and arti cial white Gaussian noise.

An outline of the paper is as follows. In Section 2, we
brie y describe both the un-modi ed AMFCC algorithm and
the modi ed AMFCC algorithm that we use in the experi-
ments. Section 3 gives an analysis of the arti cial chirp noise,
and nally in Sections 4 and 5 we nish with the recognition
experiment results and conclusions.

2. AUTOCORRELATION MEL FREQUENCY
CEPSTRAL COEFFICIENTS

The AutocorrelationMel FrequencyCepstral Coef cients (AM-
FCC) were proposed as noise robust features for speech recog-
nition. In proposing this algorithm, we were motivated by
the assumption that higher-lag autocorrelation coef cients are
less effected by noise than the original signal [1, 2, 3, 8]. In
this investigation, we use two versions of the AMFCC algo-
rithm. Both of these versions are depicted in the block dia-
gram shown in Fig. 1. The top path shown in Fig. 1 we refer
to as the “all cross terms” path and the path shown below that
we refer to as the “zero cross terms” path.

The “all cross term” path is the algorithm that has been
proposed in [1]. This algorithm uses the full autocorrela-
tion expression shown in (1) and assumes the cross terms are
zero. This algorithm has a lot of steps in common with the
MFCC algorithm [9]. The main difference can be found in
the method of estimating the speech spectrum. The MFCC
algorithm typically uses the squared Fourier magnitude spec-
trum as the estimate of the signals power spectrum. In the
case of AMFCC, we rst compute the autocorrelation coef -
cients. We then apply a high dynamic range (86 dB) window
function to the higher-lag coef cients (2 to 32 ms lag). And
nally, we compute the magnitude spectrum of the resulting

sequence as an estimate of the power spectrum of the clean
speech signal. For further details of the algorithm, please re-
fer to [1].

It is apparent from the block diagram that the “zero cross
terms” path is not realisable in a practical situation. This path
requires the speech and noise signals to be separate up until
they are combined after the autocorrelation step. Since we

are combining the speech and noise arti cially in this evalu-
ation, we are free to realise this path. This method results in
the cross correlation components being forced to zero, as was
previously discussed.

3. ARTIFICIAL CHIRP NOISE

For this evaluation, we needed a noise signal that produced
high magnitude lower-lag short-time autocorrelation coef -
cients and very low magnitude higher-lag coef cients. If we
use a noise signal with these characteristics and the zero cross
correlation assumption was good, then the AMFCC algorithm
should be immune to this noise.

We identi ed three basic signal types that give a delta
function like short-time autocorrelation sequence. These were
1) ideal white noise, 2) a pulse train where the separation be-
tween the pulses is greater than the analysis window width
and 3) a repeating chirp noise signal. For this evaluation
we chose to use the repeating chirp signal to design an ideal
noise.

The arti cial chirp noise designed for testing the AMFCC
algorithm has a period equal to the window size used on the
speech signal (32 ms). One period of this noise is gener-
ated as a sinusoidal signal whose frequency changes linearly
from zero to half of the sampling frequency over the period.
An analysis of this noise is presented in Fig. 2. These plots
show that this type of noise gives the desired high magnitude
lower-lag coef cients and very low magnitude higher-lag co-
ef cients.

4. RECOGNITION EXPERIMENTS

4.1. Speech database

In these experiments we measured the noise robustness of the
un-modi edAMFCC algorithm and the modi ed AMFCC al-
gorithm in the same conditions. To conduct this evaluation,
we used speech from the Aurora II database, the Aurora II
experiment scripts, and HTK software 1. We also tested the
baseline MFCC features as a reference.

All the experiments conducted used clean training speech.
The noisy test speech was generated by corrupting the clean
test speech from the subway noise case. To set the signal-to-
noise ratio (SNR) of the noisy test speech, we adjusted the
level of the noise sample so the global SNR after degrada-
tion was the desired value. Each recognition experiment was
repeated using six different noises at seven different SNRs.
The six noises were arti cial repeating chirp noise, Gaussian
white noise and the four AURORA noises, subway, babble,
car and exhibition. The seven SNRs were -5 dB to 20 dB in
5 dB steps and clean.

In these experiments, the speaker-independent word mod-
els had 16 emitting states. The modelled acoustic feature vec-

1Hidden Markov Tool Kit (HTK), http://htk.eng.cam.ac.uk
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Fig. 1. Block diagram showing how the noisy speech signal is generated and processed using the two AMFCC algorithms. The
box labelled “ALL CROSS TERMS” shows the typical implementation of the AMFCC algorithm. The box labelled “ZERO
CROSS TERMS” shows the modi ed algorithm that eliminates the cross terms from the autocorrelation sequence. The “ZERO
CROSS TERMS” path is not realisable in a practical system since it requires exact knowledge of the clean speech signal and
the noise signal separately. We can implement it in an arti cial framework though, since we do have exact knowledge of both
of these signals.

tor was composed of a 12 dimensional base feature. These
did not include a logarithmic energy coef cient or zero-th
cepstral coef cient. These base features were then concate-
nated with delta and acceleration coef cients to produce a
36-dimensional feature vector.

4.2. Results

The results from the experiments are shown in Fig. 3. These
plots compare the three tested features. The AMFCC-X curves
are the arti cial AMFCC features where the cross correlation
has been forced to zero. The AMFCC and MFCC features are
the un-modi ed algorithms.

From the chirp noise results, there is a clear difference
between the AMFCC and AMFCC-X features. In this case,
the AMFCC-X features show near ideal behaviour. The AM-
FCC features still show a very signi cant improvement over
MFCC features.

The other ve noise cases show the AMFCC and AMFCC-
X performance to be very similar. In these cases, the AMFCC-
X features performed better than the AMFCC features, but the
improvement was generally less than 5%.

5. CONCLUSIONS

In this paper, we investigated the validity of the assumption
that there is negligible cross correlation over a short-time be-
tween speech and noise signals. This assumption, which is
commonly used during the design of noise robust speech recog-
nition feature extraction algorithms, was shown to be fair for
the AMFCC algorithm for ve of the six tested noises. For the
sixth noise, which was a periodic chirp signal, it was shown
that the assumption was poor. We showed by using the Aurora
II database and a modi ed AMFCC algorithm that the cross

correlation between the speech and the chirp noise signal was
strong enough to produce up to 30% difference in recognition
accuracy over the normal AMFCC algorithm. This difference
was contrasted with other natural noises where the recogni-
tion accuracy differences were less than 5%.
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Fig. 2. Short-time analysis of the arti cial periodic chirp noise signal using 32 ms frames. (a) Spectrogram of a 2 s sample
of long noise signal, (b)(c)(d) Waveform of noise frames taken at 0.5, 1.0 and 1.5 s, respectively, (e)(f)(g) Power spectra
(periodogram estimate with a Hamming window) of the frames shown in (b)(c)(d), respectively. (h)(i)(j) Autocorrelation
sequences corresponding to the power spectra shown in (e)(f)(g), respectively.
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Fig. 3. Recognition accuracy results for six noises comparing the performance of AMFCC features (AMFCC), modi ed AM-
FCC features that have no cross correlation terms in the autocorrelation domain (AMFCC-X) and MFCC features.
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