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ABSTRACT

We focus on the problem of speech recognition in the presence of
nonstationary sudden noise, which is very likely to happen in home
environments. As a model compensation method for this problem,
we investigated the use of factorial hidden Markov model (FHMM)
architecture developed from a clean-speech Hidden Markov Model
(HMM) and a sudden-noise HMM. While in conventional studies
this architecture is de ned only for static features of the observation
vector, we extended it to dynamic features. A database recorded by a
personal robot called PaPeRo in home environments was used for the
evaluation of the proposed method under noisy conditions. While we
presented a recognition system using isolated-word FHMMs in our
previous work, here we evaluated the effectiveness of the phoneme
FHMMs.

Index Terms— speech recognition, robustness, speech enhance-
ment, FHMM

1. INTRODUCTION

A great deal of effort has been devoted to developing personal robots,
such as household robots, educational robots, or personal assistants,
that interact with human beings in the home environment. Most of
those robots are equipped with a speech recognition function be-
cause their interface should be suf ciently easy for children and el-
derly people to control.

While current speech recognition systems give acceptable per-
formance under laboratory conditions, their performance decreases
signi cantly when they are used in actual environments. This is
mainly because many different kinds of nonstationary noise exist
in actual environments. Developing speech recognition devices that
are robust against that noise is important. There have been many
studies on this topic, and they are categorized as follows: speech
enhancement, missing data theory, and model compensation.

Speech enhancement aims at suppressing noise in the speech
signal with the risk of degrading the original clean signal. Spec-
tral subtraction, ltering techniques, and mapping transformation [1]
belong to this category. They are known to be effective when the
noise is stationary, but their performance degrades signi cantly for
nonstationary noise.

Missing data theory tries to determine the level of reliability of
each spectral region in the speech spectrogram [2], assuming that
some portions of the speech spectrum are not contaminated by noise.
However, this approach is effective only for noise that selectively
corrupts a small portion of the signal spectrum.

Model compensation methods use noise models and combine
them with speech models during the recognition process. One ex-
ample is the well-known HMM composition and decomposition
method [3], which can deal with nonstationary noise, but it is com-

putationally expensive. A simpli ed version of HMM composi-
tion and decomposition is the parallel model combination (PMC)
approach [4]. Although computationally less expensive, the gain
matching term, which determines the signal-to-noise ratio (SNR),
must be manually chosen. Therefore, the PMC approach works well
only for noise with a relatively stable SNR.

We focus on the problem of speech recognition in the presence
of nonstationary sudden noise, which is very likely to happen in
home environments. This noise appears suddenly and lasts for a
short time, and there is no a priori information about its SNR. The
SNR changes from one sentence to another; it also changes within
one sentence. At each moment, SNR depends on speaker, noise
source, and robot position. Hence, preparing an appropriate PMC
model for each utterance is practically impossible. We applied a
model compensation method based on factorial hidden Markov mod-
els (FHMMs) that have been introduced as a possible extension of
HMMs in [5] to solve this problem. By using the log-max approxi-
mation, FHMM can calculate the output probability of the combined
model of speech and noise without any gain matching term even
when the SNR varies signi cantly. We also proposed an extension
to employ dynamic features as well because the FHMM architec-
ture proposed in [6] is applicable only to static features of speech
signals. In our previous work [7], the proposed method was eval-
uated with the use of word FHMMs. Here, we discuss phoneme
FHMMs to extend our work to large vocabulary continuous speech
recognition (LVCSR) system. First, an HMM for each phoneme in
the dictionary and an HMM for sudden noise are created. Then,
these models are combined to create an FHMM for each phoneme.
A database recorded by a personal robot called PaPeRo [8] in home
environments was used for the evaluation of the proposed method.
The experiments con rmed that our method improved the recogni-
tion accuracy under noisy conditions.

2. ROBUST SPEECH RECOGNITION USING FHMMS
2.1 FHMM

Let two HMMs, Q and R, withN andW states, respectively, de ne
an FHMM with two layers. The rst layer, Q, represents speech,
while the second layer, R, models sudden noise. Then, at each time,
the speech and noise processes are described by the FHMM metas-
tate (q,r), which is de ned as a pair of states, q and r, of HMM
Q and HMM R, respectively. Furthermore, we assumed that the
element-wise maximum of the output observations of the two layers
is taken [9]. The structure of this FHMM is shown in Figure 1.

2.2 Log-max approximation

Log-max approximation is based on the observation that, unless two
signals are synchronized, the spectrum of their mixture is almost
the same as the element-wise maximum of the spectrums of these

IV ­ 10291­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



q(t1) q(t2) q(t3)

r(t1) r(t2) r(t3)

Chain/HMM Q

Chain/HMM R

MAX

x(t1) x(t2) x(t3)

MAX MAX

n(t1) n(t2) n(t3)

y(t1) y(t2) y(t3)

Fig. 1. Structure of FHMM composed of two HMMs, Q and R.

two signals. The spectrum of the noisy speech, y(t), which is the
combination of clean speech, x(t), and sudden noise, n(t), can be
easily calculated by using the following approximation [6] :

log |Y (jω)| = max(log |X(jω)|, log |N(jω)|), (1)

where Y (jω), X(jω), and N(jω) are the Fourier transforms of
y(t), x(t), and n(t), respectively. This log-max approximation was
also shown to hold for Mel Frequency Spectral Coef cients
(MFSC) [6], which are de ned as the log-energy outputs of the speech
signal after they are ltered by a bank of triangular bandpass lters
on a Mel frequency scale.

2.3 Model formulation

2.3.1 Transition matrix

The FHMM with layers Q and R de ned in Section 2.1, can be rep-
resented by a traditional HMMwithN×W states [10]. Its transition
matrix is de ned by the Cartesian product between the transition ma-
trices AQ and AR of HMMs Q and R, respectively [10]:

a(i,j)(k,l) = a
Q

ika
R
jl, 1 ≤ i, k ≤ N, 1 ≤ j, l ≤ W. (2)

2.3.2 Output probability density function estimation

For each frame, lety = (y1, y2, . . . , yD)T , x = (x1, x2, . . . , xD)T ,
andn = (n1, n2, . . . , nD)T be theD-dimensional MFSC vector for
noisy speech, clean speech, and noise, respectively. Then, output y
of the FHMM for each frame is given by the log-max approximation:

y ≈ max(x, n), (3)

where “max(., .)” stands for the operation selecting the element-
wise maximum. This approximation is based on the assumption that,
at each time and at each frequency band, one of the mixed signals
is much stronger than the other. Hence, the contribution to the out-
put probability density function (pdf) from the weaker signal can be
neglected.

Let the output pdfs for state q in HMM Q and state r in HMM
R be represented by the mixture of Gaussians:

pq(x) =
MX

m=1

cqmN(x|μqm,Σqm) and (4)

pr(n) =
MX

m=1

crmN(n|μrm,Σrm), (5)

where M is the number of Gaussians in each state, μqm and μrm

are the mean vectors of them-th mixture components of states q and
r, and cqm and crm are the m-th mixture coef cients, respectively.
We assume that the covariance matrices Σqm and Σrm of the m-th
mixture in states q and r, respectively, are diagonal. Hence, a D-
variate GaussianN(.|., .) is equivalent to the product of D univariate
Gaussians. Then, the pdf of the observation vector y for metastate
(q,r) of the FHMM is de ned by [6]:

p(q,r)(y) = pq(y)Fr(y) + pr(y)Fq(y), (6)

where

Fq(y) =

MX
m=1

cqm

DY
d=1

Z yd

−∞

pq(xd)dxd and (7)

Fr(y) =
MX

m=1

crm

DY
d=1

Z yd

−∞

pr(nd)dnd. (8)

Symbols pq(xd) and pr(nd) represent the d-th univariate Gaussians
in states q and r of HMM Q and HMM R, respectively.

2.4 Extension of FHMM to dynamic features [7]

Temporal changes in the speech spectrum provide important clues
about human speech perception and are helpful in describing speech
trajectory. The most popular approach to represent this information
is to useΔ coef cients, which are calculated as follows:

Δyt =

GX
τ=1

τ (yt+τ − yt−τ )

GX
τ=1

τ
2

, (9)

where yt andΔyt stand for static coef cients and dynamic coef -
cients, respectively, of the observation vector y in frame t. Parameter
τ de nes the time shift. It is known that representation containing
both static and dynamic features has better performance in speech
recognition than a representation with only static features [11].

The calculation of the output pdf de ned in (6) is based on the
log-max approximation. Although this approximation is very effec-
tive for static features, it cannot be applied directly to the dynamic
part of observation vectors. The element-wise maximum operation
between dynamic features of two different signals is meaningless
and does not approximate the Δ features of the mixed signal be-
cause dynamic features contain information about changes in the
signal over time.

Therefore, we assume that the HMM for the dominant signal,
which was selected based on static features of mixed signals, can be
used to calculate the pdf for the dynamic features as well. We incor-
poratedΔ features by de ning the output pdf of FHMM p′q,r(y, Δy)
as:

p
′

(q,r)(y,Δy)=

8><
>:

p(q,r)(y)pq(Δy),
if pr(y)Fq(y) < pq(y)Fr(y),

p(q,r)(y)pr(Δy), otherwise,

(10)

where Δy represents the dynamic features of y, and pr(Δy) and
pq(Δy) are the output pdfs for the dynamic part of the observa-
tion vector y given by HMM Q and HMM R, respectively. The pdf
p(q,r)(y) was de ned in (6). The condition in (10) de nes whether
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process Q or process R is dominant at a given time, thus de ning
which HMM should be used to calculate the output pdf for the Δ

features. Terms Fq(y) and Fr(y) can be regarded as weighting co-
ef cients.

3. EXPERIMENTS
3.1 Experimental conditions

For the evaluation of the proposed method, we used a database
recorded by a personal robot called PaPeRo, developed by NEC Cor-
poration [8], which was used in the houses of 12 Japanese fami-
lies (H01-H12). The whole database contains 74640 sounds each of
which was detected by the speech detection algorithm equipped in
PaPeRo. These sounds recorded by PaPeRo were labeled manually
and classi ed into three different types: speech without noise, noisy
speech, and noise without speech. In this study, we used 16,000
samples of clean speech, and 480 recordings of sudden noise such
as doors slamming, knocking, and falling objects. We also used
2,828 samples of speech corrupted by sudden noise, which we call
recorded noisy speech. Each sample is de ned as the recording that
consists of silence, uttered word (speech sample) or noise (noise
sample), and silence. Samples were digitized at the 11,025 Hz sam-
pling rate, and analyzed at a 10 msec frame period. Log lter-bank
parameters consisting of 24 static features, 24Δ features, andΔ en-
ergy were used as the input features in each frame. The vocabulary
contains 1492 entries, consisting of words and simple phrases (for
simplicity we treated each phrase as a word).

First, we constructed clean-speech HMMs and an HMM for sud-
den noise. The recognition units in clean-speech HMMs were tri-
phones, which were trained using clean-speech data. An HMM for
sudden noise was trained using sudden noise samples. A word HMM
was designed for each entry in the vocabulary by concatenating the
states of the silence HMM and triphone HMMs according to their
corresponding sequence in the given entry. A noise ’word’ HMM,
which consists of nine states (three states of silence, three states of
sudden noise, and the remaining states also of silence), was built in
a similar manner. The state output pdf for all HMMs was a single
Gaussian distribution. The word FHMM for a given word was cre-
ated by combining the word HMM for clean speech and the noise
’word’ HMM. Differently from word FHMMs, an phoneme FHMM
that models speech and noise in parallel for a given phoneme was
created by combining triphone HMMs for clean speech with the
noise HMM, as described in 2.1.

3.2 Effectiveness of FHMMs

First, we evaluated the effectiveness of the proposed FHMMs. In this
experiment, the samples from eight houses (H02-H06, H08, H09,
and H11) were used for training the HMMs of clean speech and sud-
den noise. The test set was prepared as follows. From each of the
remaining 4 houses, all samples of sudden noise and 137 samples
of clean speech were taken. Then, each clean speech sample was
paired with a sudden noise sample that was selected randomly from
the noise samples in the remaining 4 houses. Next, the paired speech
and noise samples were mixed at different SNRs: −5, 0, 5, 10, and
20 dB. An evaluation test with 548 utterances at each SNR was pre-
pared.

We compared the recognition accuracies of clean-speech HMMs
without Δ features, clean-speech HMMs with Δ features, FHMMs
with Δ features, and FHMMs without Δ features for the ve dif-
ferent SNRs. The results averaged over the four houses are shown
in Figure 2. The FHMMs performed better than their corresponding
clean-speech HMMs. The FHMMs de ned only for static features

Fig. 2. Recognition rates of speech arti cially corrupted by sud-
den noise. HMMs (baseline) and the proposed method (phoneme
FHMMs) with and without Δ features.

improved the recognition accuracy by 4.7% absolute at −5 dB, by
3.6% absolute at 0 dB, by 2.7% absolute at 5dB, and by 4.0% abso-
lute at 10 dB. WhenΔ features were included, further improvement
was obtained. The proposed FHMM improved the recognition accu-
racy obtained from clean speech HMMs by 4.8% absolute at 10 dB,
by 8.1% absolute at 5 dB, by 12.7% absolute at 0 dB, and by 9.7%
absolute at −5 dB. As the SNR increased, however, the difference
between the baseline clean-speech HMMs and the proposed FHMMs
decreased, giving a slight advantage to the conventional HMM at 20
dB SNR and under clean conditions. This may be because slight
mismatches between the training data and the test data in the clean
part of the noisy speech were misrecognized as noise when the SNR
is high. When the recognizer chooses the noise as the stronger sig-
nal [see (10)], the wrong HMM model is used to calculate the pdf
of Δ features of the clean speech signal. Hence, the initial error is
ampli ed and is more dif cult to correct.

Next, we evaluated the effectiveness of FHMMs in real con-
ditions. For the evaluation, we used a “leave-one-out” method,
where the training and testing process was repeated for each house,
except for H11, which had a very small number of noisy speech
samples. For each house, the training data consisted of samples of
clean speech from all other houses. Recorded noisy speech sam-
ples of the given house were taken for a testing set. The sizes of
the test sets were different for each house, ranging from 24 to 500
samples. In our previous work [7], we created word FHMMs and
showed their effectiveness in real conditions. Here, we compared
the word FHMMs, clean speech HMMs and phoneme FHMMs with
Δ features. The results are shown in Figure 3. The results given by
clean-speech HMMs and word HMMs were the same. The phoneme
FHMMexhibited better performance than that of clean speech HMMs,
giving improvement ranging from 3.4% to 11.7% absolute (H10 to
H05), respectively, for almost all houses except H04.

On average, phoneme FHMMs achieved 12.8% relative error re-
duction compared to that of clean speech HMMs. The word FHMMs
performed better than phoneme FHMMs giving 17.9% of relative er-
ror reduction. It might be due to the fact that in phoneme FHMMs
the noise duration is that of the phoneme, while in reality it is longer,
hence word FHMM better models the phenonema. On the other
hand, using phoneme FHMMs is more desirable, especially in large
vocabulary recognition systems. Additionally, phoneme FHMMs re-
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Fig. 3. Results for real recorded noisy speech data
duces the computational time which is quite high in the case of word
FHMMs.

4. CONCLUSION AND FUTURE WORK

We investigated the use of FHMMs for speech recognition in the
presence of nonstationary sudden noise, which is very likely to be
present in home environments. The proposed FHMMs achieved
better recognition accuracy than clean-speech HMMs for different
SNRs. The usability of FHMMs was further investigated by using a
recorded noisy speech test set. The overall relative error reduction
given by phoneme FHMMs withΔ features was 12.8% compared to
that given by the clean-speech HMMs.

We created a noisy phoneme FHMM by combining an HMM
for clean speech and an HMM for noise, both of which have simple
structures in this study. HMMs created with more complex struc-
tures (more Gaussians per state, different HMMs topologies, and
number of states) need to be investigated. In our experiments, we
used MFSC features because they follow the log-max approxima-
tion. In the future, we would like to apply more robust features
to FHMM architecture. FHMMs for the combination of different
noises should also be investigated.
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