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ABSTRACT

This paper presents a novel feature normalization technique for ro-
bust speech recognition. The proposed technique normalizes the
temporal structure of the feature to reduce the feature variation due to
environmental interferences. Speci cally, it normalizes the utterance-
dependent feature modulation spectrum to a reference function by
ltering the feature using a square-root Wiener lter in the temporal

domain. We show experimentally that the proposed technique when
combined with mean and variance normalization technique (MVN)
reduces the word error rate signi cantly on the AURORA-2 task,
with relative error rate reduction 69.11% compared to the baseline.

Index Terms— Speech recognition, feature normalization, mod-
ulation spectrum, square-root Wiener lter, temporal lter

1. INTRODUCTION

Current automatic speech recognition (ASR) systems are not robust
against environmental interferences, such as additive background
noise and convolutional channel distortions. The robustness prob-
lem is attacked by various techniques and one group of them are the
normalization techniques that aim to normalize the statistics of the
speech feature.

There are three techniques for normalizing the statistical distrib-
ution of the feature, they are the cepstral mean normalization (CMN)
technique [1], the cepstral variance normalization (CVN) technique
[2], and the histogram equalization (HEQ) technique [3]. The CMN
technique removes the utterance mean of the feature to reduce chan-
nel distortions. The CVN technique normalizes the feature variance
to a xed value to put the features in the same scale. The CMN
and CVN are usually used in cascade to form the mean and vari-
ance normalization (MVN) to normalize both the rst-order and the
second-order moments of the feature. The HEQ technique equalizes
the histogram of the speech feature to a xed probability distribution
function (pdf), such as Gaussian distribution.

The above-mentioned techniques focus on normalizing the sta-
tistical distribution of the speech features. Recent researches [4]-[7]
show that it is also desirable to lter the feature in the temporal do-
main to improve the robustness of ASR. An early temporal lter
called the representations relative spectra (RASTA) [4] is a band-
pass in nite impulse response (IIR) lter that operates in the log
lterbank domain. The passband of the RASTA lter is from 0.26

to 14.3Hz in modulation frequency. The attenuation of the low fre-
quency reduces the convolutional noise’s effect in the similar way
as the CMN, and the attenuation of the high frequency reduces fea-
ture variations due to the feature extraction process. The RASTA
lter was reported to perform well on reducing the effect of convo-

lutional noises, but it is less effective in removing the effect of addi-
tive noises. Later, the RASTA lter is supported by the experimental

observation of Kanedera et al.[5] which shows the relative impor-
tance of different bands of modulation frequency on ASR. Their ob-
servation shows that the low frequency 0-1Hz and high frequency
16-50Hz are harmful or not useful for ASR, while the modulation
frequency around 4Hz is most useful for recognition task.

Besides the empirically designed RASTA lter, several data-
driven temporal lters have been designed from the speech data us-
ing some criteria, such as linear discriminant analysis (LDA), prin-
ciple component analysis (PCA) and minimum classi cation error
(MCE), and they are summarized nicely in [6]. The basic idea of
these lters is to project the speech feature into a subspace for en-
hanced discriminative ability, and the lters are mostly low-pass or
band-pass. In [6], these lters are reported to improve the recog-
nition accuracy signi cantly for a connected Chinese digital string
task.

Another technique called MVA [7] is the cascade of the MVN
and a low-pass autoregressive moving average (ARMA) lter. The
MVA technique is motivated by the observation that the noisy speech
features after MVN operation are usually less smooth than their clean
counterpart. Despite its simplicity, the MVA achieves signi cant im-
provement on recognition accuracy for the AURORA-2 task.

The temporal lters described above focus on smoothing the
speech feature rather than explicitly normalizing the temporal struc-
ture of the feature. In this paper, we will examine the normaliza-
tion strategy and investigate its effect on the ASR. Speci cally, we
design temporal lters to normalize the utterance-dependent feature
PSD (i.e. the modulation spectrum) to a reference PSD function,
which in effect is to normalize the feature’s temporal structure. The
square-root Wiener lter is used for the normalization and two fea-
ture post-processing schemes are proposed based on it.

This paper is organized as follows. In section 2, we introduce
the proposed temporal structure normalization (TSN) technique. In
section 3, we present the experimental results and compare the TSN
with existing lters. Finally, we conclude in section 4.

2. NORMALIZING THE PSD OF SPEECH FEATURE

2.1. Temporal Structure Varies with Environment

We use the Mel-scaled lterbank cepstral coef cient (MFCC) as the
feature for speech recognition. Let x(n, k) be the cepstral coef -
cient of the nth frame and kth MFCC channel (the kth feature) of
an utterance. Let the coef cients of all frames for the kth channel
be xk(n). Hence, there are K time series, x1(n) to xK(n), where
K is the number of channels. For our experiments, the raw features
are the c0 − c12 cepstral coef cients, delta and acceleration coef-
cients, thus K = 39. The time series of these raw features are
rst processed by MVN, then normalized by the proposed temporal

structure normalization (see Fig. 1). After MVN, these time series
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Fig. 1. The block diagram of the proposed framework
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Fig. 2. An example of the time series of MFCC feature c1 corrupted
by additive car noise after MVN operation in three SNR levels.

will have zero mean and unit variance. The sampling rate of the time
series, also known as feature frame rate, is 100 Hz. We will examine
how the temporal structure of these time series in the form of PSD
changes with noise.

Fig. 2 shows the time series for c1 of one utterance corrupted by
additive car noise after MVN and its PSD in three SNR levels. The
PSD is estimated using the Yule-Walker method with the order of
the model being 15. From Fig. 2(a)-(c), it is obvious that the speech
features in low SNR level are less smooth than those in high SNR
levels. In the PSD diagram Fig. 2(d), the noisy features’ PSD func-
tions have a higher power density in the high modulation frequency
ranges than their clean counterpart. This explains our previous ob-
servation. To reduce the feature’s variation due to noise, we propose
to normalize the feature’s PSD function.

2.2. Normalizing the Temporal Structure Using the Square-root
Wiener Filters

It is known that the square-root Wiener lter has the property of
normalizing the ltered signal’s PSD to the desired signal’s PSD [8].
In the following text, we will introduce our approach of applying
the square-root Wiener lter to normalize the speech feature’s PSD
functions.

Let yk(n) be the observed noisy speech feature series for the
kth channel and xk(n) be its underlying clean version. Let vk(n)
be the noise that is the difference between xk(n) and yk(n). Hence,
we have the following relationship:

yk(n) = xk(n) + vk(n), for k = 1, ...,K (1)

Let P k
xy(ω) be the cross PSD between xk(n) and yk(n), and let

P k
xx(ω), P k

yy(ω) andP k
vv(ω) be the PSD of xk(n), yk(n) and vk(n),

respectively. The magnitude response of the square-root Wiener l-
ter is [8]

|Hk(ω)| =
�
P k

xy(ω)/P k
yy(ω) (2)

If xk(n) and vk(n) are assumed to be statistically independent from
each other, P k

yy(ω) = P k
xx(ω) + P k

vv(ω) and P k
xy(ω) = P k

xx(ω).
Although this assumption is not completely true, features that have
been post-processed by the square-root Wiener lter showed im-
provement in recognition accuracy. The square-root Wiener lter
can be rewritten as

|Hk(ω)| =
�
P k

xx(ω)/P k
yy(ω) (3)

From equation (3), we nd that the square-root Wiener lter de-
pends on the PSD of the noisy feature and clean feature. For im-
plementation, the noisy PSD P k

yy(ω) can be estimated from a short
segment of yk(n), such as an utterance, by assuming that yk(n) is
stationary in the segment. As the PSD of the clean feature P k

xx(ω)
is unknown, we instead use an averaged PSD function P̄ k

xx(ω) to
evaluate |Hk(ω)|. We call P̄ k

xx(ω) the reference PSD functions and
obtain them by averaging the clean feature’s PSD over multiple ut-
terances. This is possible as the PSD of clean features of a channel
is similar for different utterances. To reduce the variation of P̄ k

xx(ω)
due to the effects of speech content and speaker, we average the fea-
ture PSD over a collection of different utterances.

It is easy to integrate our technique with other temporal lter-
ing techniques. For example, we can combine the MVA technique
and our method by either ltering the features using MVA before
training of the reference PSD functions P̄ k

xx(ω), or multiplying the
magnitude response of ARMA lter to |Hk(ω)|. In either way, the
resulting lters will not only normalize the feature’s PSD, but also
low-pass lter the feature.

After obtaining |Hk(ω)|, the lter’s coef cients can be found
using the windowed FIR lter design method [9]. We summarize
the proposed method as follows (see also Fig.1).

Training the reference PSD functions:

1. Calculate the feature PSD of all channels of all training utter-
ances P k,m

xx (ω), for k = 1, ...,K and m = 1, ...,M , where
M is the number of utterances used for training P̄ k

xx(ω)

2. Find the averaged clean PSD function using

P̄ k
xx(ω) =

1

M

M�
m=1

P k,m
xx (ω), k = 1, ...,K (4)

Designing the FIR lters:

1. For each incoming utterance, calculate the utterance’s feature
PSD P k

yy(ω) for k = 1, ...,K .

2. Find the |Hk(ω)| for k = 1, ...,K using

|Hk(ω)| =
�
P̄ k

xx(ω)/P k
yy(ω), ω ∈ [−π, π] (5)

3. Find the lter’s weights using the inverse discrete Fourier
transform (IDFT).

wk(i) = IDFT(|Hk(ω)|) (6)

4. Form the lter’s weights w′
k(i) using only the middle part of

wk(i) to reduce the lter length and computational complex-
ity. This is possible because the most signi cant weights are
concentrated in the middle of wk(i).
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Fig. 3. Effect of TSN1 on the feature’s PSD as appeared in Fig. 2(d)

5. Apply Hanning window on w′
k(i) to reduce truncation effect.

6. Normalize the sum of the weights to one to ensure that the
lter’s gain is unity at zero frequency.

The phase responses of the lters designed using the above win-
dowed method are linear and identical for all channels and utter-
ances. After the lters are designed, the normalized features are
estimated as x̂k(n) = yk(n) ⊗ w′

k(i) for k = 1, ...,K , where ⊗
denotes the convolution operation.

3. EXPERIMENTS AND RESULTS

3.1. Experiment Settings

For our experiments, the PSD is estimated using the Yule-Walker
method with the autoregressive model order be 15 to obtain the de-
sired smoothness for the PSD. The number of bins for the two sided
PSD is 256 to ensure suf cient samples in the frequency domain. We
experimented with two temporal structure normalization schemes,
the TSN1 and TSN2. They differ in the features used to train the
reference PSD functions: a) the training features for TSN1’s refer-
ence functions are processed by MVN only, and b) those for TSN2
are rst processed by MVN and then smoothed by the ARMA lter
used in MVA [7]. The order M of the ARMA lter is experimen-
tally decided to be 3 for our settings which results in the highest
recognition accuracy. We use 1000 utterances from the training set
of AURORA-2 database [10] for the training of the reference func-
tions, with half male speakers and half female speakers. The lter
length of 21 is chosen as it achieves the highest speech recognition
accuracy for the AURORA-2 task.

3.2. Normalization Effect on Features

In Fig. 3-4, we show the normalization effects of TSN1. Fig. 3(a)
shows the same PSD functions as that appeared in Fig. 2(d) along
with the reference PSD function. Fig. 3(b) illustrates the magnitude
response of the lters to equalize the noisy PSD to the reference PSD
for different SNR levels. For the clean case, the magnitude response
is slightly high-pass while for the SNR=15dB and 5dB cases, the
lters are both low-pass. By comparing the magnitude responses

of the TSN lters and the ARMA (order=3) lter, we nd that the
stop-band attenuation of TSN lters is much weaker than that of the
ARMA lter. Fig. 3(c) shows that the normalized PSD functions are
very similar to the reference PSD function.
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Fig. 4. Effect of TSN1 on the feature as appeared in Fig. 2(a)-(c)

Fig. 4(b)-(d) compares the normalized version of the time series
of Fig. 2(a)-(c) with their original clean version in Fig. 4(a). It is
observed that the

smoothness of the normalized features in different SNR levels
is more similar and that the normalized clean features are almost
the same as the original clean features. This indicates that the l-
tering process does not alter the clean features signi cantly. On the
other hand, the normalized SNR=15dB and 5dB features are much
smoother than their original features. This shows that the TSN1 l-
ters the features of different SNR differently.

The normalization effects of TSN2 are similar to that of TSN1
except that the normalized features are more smoother in all SNR
levels.

3.3. Recognition Results

In this section, we compare the performance of the proposed normal-
ization schemes with 4 other methods using the AURORA-2 frame-
work [10]. The training and testing of the recognition engine follow
the scripts provided by the framework, except that the c0 is used,
rather than the log energy. In all the experiments, the 13 MFCC fea-
tures, c0−c12, together with their delta and acceleration features are
generated prior to any post-processing. After these 39 features are
generated, different post-processing techniques are applied on them
separately. There are altogether six post-processing techniques, they
are:

a) MVN: CMN followed by CVN.

b) RASTA: MVN followed by RASTA ltering.

c) MVA (M=3): MVN followed by ARMA ltering.

d) LPF: MVN followed by LPF ltering.

e) TSN1: MVN followed by TSN1.

f) TSN2: MVN followed by TSN2.

Among these techniques, the CMN and CVN are implemented utter-
ancewise. The RASTA lter is implemented using the equation (1) in
[4], with the pole value set to 0.94 for better performance. The LPF
is a low-pass lter designed in the same way as the TSN lter except
that its magnitude response is an ideal low-pass lter and identical
for all channels. The lter length of LPF is set to be the same as the
TSN lter and its optimal cut-off frequency is experimentally found
to be 12Hz that yields the best recognition accuracies.
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Table 1. Recognition Accuracy (%) for AURORA-2 Task Averaged
Across the SNR Between 0 and 20 dB. RI (%) Is the Relative Error
Rate Reduction Over the Baseline

Method Set A Set B Set C Avg. RI

Baseline 53.17 47.89 63.05 53.03 -

MVN 77.91 79.48 77.70 78.49 54.20

RASTA 81.06 82.69 81.71 81.84 61.34

MVA 84.18 85.16 84.28 84.59 67.19

LPF 83.67 85.34 84.05 84.41 66.81

TSN1 84.27 85.87 83.62 84.78 67.60

TSN2 84.72 86.59 84.80 85.49 69.11

Table 2. Recognition Accuracy (%) for AURORA-2 Task for Each
SNR Level Averaged Across Ten Noise Cases.

Method Clean 20dB 15dB 10dB 5dB 0dB -5dB

MVN 99.12 97.46 94.92 88.41 71.51 40.17 16.08

RASTA 99.10 97.27 94.94 89.60 76.50 50.89 22.30

MVA 99.10 97.81 95.95 91.38 80.43 57.39 27.09

LPF 99.23 97.92 96.07 91.46 79.94 56.69 26.27

TSN1 99.23 97.69 96.01 91.55 80.95 57.71 27.16

TSN2 99.26 97.93 96.13 92.06 81.76 59.56 28.13

The experimental results are summarized in Table 1-2. In Ta-
ble 1, the MVN result shows that the normalization of the rst and
second order moments of the feature improves the accuracy signi -
cantly over the baseline and there is a relative error rate reduction of
54.20%. The RASTA, MVA and LPF all further improve the perfor-
mance by ltering out some feature variations between the clean and
noisy features, with the improvements of MVA and LPF noticeably
higher than that of RASTA. The proposed TSN1 scheme produces
slightly higher accuracy than the MVA and LPF. Finally, the TSN2
scheme achieves the highest accuracy among all the techniques and
its improvement is higher than that of MVA by a 0.9% absolute im-
provement in accuracy.

In Table 2, we compare the performance of the post-processing
techniques in difference SNR levels. It is observed that TSN2 out-
performs all other results in all SNR levels.

3.4. Discussion

The proposed temporal structure normalization technique aims to
normalize the feature’s PSD function rather than simply smoothing
the features. The TSN1 scheme provides only the normalization of
the feature PSD, while the TSN2 scheme also provides extra smooth-
ing. The extra smoothing enables the TSN2 scheme to outperform
the TSN1 scheme in terms of recognition accuracy. This agrees with
the experimental nding of Kanedera et al. [5] that stated that the
high modulation frequency is not useful for speech recognition. Al-
though the TSN1 scheme has poorer performance than the TSN2
scheme due to its mild smoothing, it preserves more speech details
that may be useful for large vocabulary speech recognition tasks. We
are going to examine the effect of smoothing on the speech recogni-
tion accuracy on large vocabulary tasks.

Our experimental results also showed that the proposed TSN

schemes are superior to the xed optimal low-pass lter with the
same lter complexity, due to their ability to adapt the lter weights
to different noise and SNR situations.

The extra computational cost introduced by our approach is on
the IDFT and Yule-Walker PSD estimation operations which can
both be implemented using ef cient algorithms, such as the fast
Fourier transform (FFT) and the Levinson-Durbin recursion [9], re-
spectively. While there is an extra computational need, the perfor-
mance improvement justi es the relatively modest computing over-
head.

4. CONCLUSION

In this paper, we examined a new feature post-processing technique
that normalizes the speech feature’s temporal structure explicitly in
the form of PSD. The proposed TSN technique lters the speech
features aiming to bring the feature PSD functions of the current ut-
terance to reference functions. Experimental results show that TSN
improves the recognition accuracy for both clean and noisy cases for
the AURORA-2 task.
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