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ABSTRACT

This work presents two contributions to language identification. 

The first contribution is the definition of a set of properly 

selected time-frequency features that are a valid alternative to 

the commonly used Shifted Delta Cepstral features. 

As a second contribution, we show that significant performance 

improvement in language recognition can be obtained 

estimating a subspace that represents the distortions due to inter-

speaker variability within the same language, and compensating 

these distortions in the domain of the features. 

Experiments on the NIST 1996 and 2003 Language Recognition 

Evaluation data have been successfully used to validate the 

effectiveness of the proposed techniques. 

Index Terms— language identification, cepstral-time 

matrices, speaker and channel compensation, frame domain 

compensation, phonetic language models

1. INTRODUCTION 

The combination of acoustic based Language Identification 

(LID) systems with phonetic systems has been shown to give 

excellent performances in the last formal NIST evaluations 

[1,2]. This paper focuses on acoustic only LID systems for 

which Gaussian Mixture Modeling (GMM) and Support Vector 

Machine (SVM) are the state-of-the-art classifiers [3,4]. The 

main advantage of acoustic-based systems is that they do not 

require phonetic transcriptions. Moreover, improved acoustic 

systems allow obtaining better performance in combination with 

phonetic-based systems.   

 In this paper we present the cepstral-time matrices [5] as an 

alternative to the commonly used Shifted Delta Cepstra (SDC) 

features. These time-frequency features in our advice have more 

perceptual grounds and wider flexibility. Moreover, using less 

parameters, they give results similar to the SDC features. 

 Also, to reduce inter-speaker variability rather than using 

Vocal Tract Length Normalization [6,2], we show that 

significant performance improvement can be obtained using 

factor analysis. In particular, we evaluate a factor subspace that 

represents the distortions due to inter-speaker variability within 

the same language, and compensate these distortions in the 

domain of the features. 

The paper is organized as follows: Section 2 analyzes the 

characteristics of the SDC features and allows appreciating 

another approach for capturing temporal dependencies, 

described in Section 3, based on cepstral-time matrices. An 

extensive set of experiments using these features with a Support 

Vector  Machine  classifier  is presented in Section 4. Section 5 

and 6 present the frame based inter-speaker variation 

compensation approach and its performance, respectively. Last 

Section is devoted to our final remarks and ongoing work.  

2. SHIFTED DELTA FEATURES 

The Shifted Delta Cepstral features have been introduced to 

improve the LID performance with respect to the classical 

cepstral and delta cepstral features [7]. 

 The SDC coefficients are computed, for a cepstral frame at 

time t, according to: 
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where n is the n-th cepstral coefficients, d is the lag of the 

deltas, P is the distance between successive delta computations, 

and      i =0, k-1 is the SDC block number. The final feature 

vector is obtained by concatenation of k blocks of N parameters.  

 Analyzing (1), we notice that cn (t,i) = cn (t+iP,i-1),  for 

example cn (t,2) = cn (t+P,1) = cn (t+2P,0). Thus, all blocks 

contain exactly the same values, shifted by P positions, with the 

exceptions of the contributions of the initial and final frames of 

the utterance.   

 The configuration 7-1-3-7 for N-d-P-k has been used for 

language recognition in [4] in the framework of the generalized 

linear discriminant sequence kernel (GLDS) Support Vector 

Machines (SVM) [8]. In this framework, the mean SDC vector b

is computed averaging the SDC coefficients of all the utterance 

frames. Thus, for long conversations, the mean vector b would 

include highly correlated parameters (N parameters repeated k

times). This is also true for a large number of components of the 

polynomial expanded vector. 

 Actually, these problems are avoided because the SDC are 

computed on the whole utterance, and then the SDC frames 

belonging to “non-speech” regions are eliminated [4] producing, 

therefore, many relatively short regions where the effects of the 

initial and final frames compensate the intrinsic correlation of 

the SDC features.  

 No problem exists in the GMM framework because each 

Gaussian of the mixture models an SDC vector that represent a 

different trajectory in time of a set of cepstral parameters. 

3. CEPSTRAL-TIME MATRICES 

The main rational for using SDC is to incorporate additional 

temporal information about the speech into the feature vector [7] 

to capture temporal dependencies that are typical of a language.  

 For this purpose, time-frequency features, have been used 

since long time for speech recognition [5,10,11], and more 

recently for speaker [12], and language recognition [13].  
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Table 1. %EER of an SVM classifier with different features 

using the best four sets of features. 

SVM without 

 frame compensation Corpus 
N. of  

params 
Features 

30sec 10sec 3sec 

49
SDC 7-1-3-7 

No MFCC 
4.38 12.55 25.98 

56 SDC 7-1-3-7 3.11    9.98 23.31 

48 DCT  12-3-7 3.66 9.10 21.63 

49 DCT  7-6-21 3.25 10.51 23.38 

NIST 

LRE 

1996

50 DCT 5-9-21 3.11 11.13 23.65 

49
SDC 7-1-3-7 

No MFCC 
6.59 14.74 27.02 

56 SDC 7-1-3-7 4.43 12.06 23.77 

48 DCT  12-3-7 4.85 11.97 23.68 

49 DCT  7-6-21 4.60 12.47 25.69 

NIST 

LRE 

2003

50 DCT 5-9-21 5.60 14.22 27.44 

The time-frequency features in the approach presented in [13] 

require the estimation of one “filter”, obtained by Principal 

Component  Analysis, for each language. Moreover they have 

been tested only for a relatively small context of 9 frames, 

corresponding to the classical delta-delta cepstral window. 

 Cepstral-time matrices [5] account both for short and long 

time variations of the spectral features and their correlation in 

time. A single one-dimensional DCT along the time axis of a 

matrix containing W MFCC vectors (the context window) is 

required to produce the cepstral-time matrices, rather than 

several PCA filters as in the time-frequency approach of [13]. 

Moreover, the number of the cepstral coefficients, the order of 

the temporal DCT, and the length of the context window can be 

properly selected to capture different types of spectral 

variations, and better performance can be obtained combining 

different systems exploiting the complementarities of these 

features. 

4. COMPARING SDC AND CEPTRAL-TIME FEATURES 

In this work we tested three cepstral-time feature configurations 

where static cepstral coefficients are concatenated with the 

parameters of a cepstral-time matrix obtained by a temporal 

DCT. Settings referred to as DCT N-O-W define a cepstral-time 

matrix where a temporal DCT of order O is performed on a 

context window of W frames including the first N MFCCs (0 to

N-1). In particular, we tested the settings:  

DCT 12-3-7, which produces information related to the first, 

second, and third order differentials of the first 12 MFCCs 

DCT 7-6-21, which has the same number of parameters of 

the  SCD 7-1-3-7 features, and covers long time variations 

of the spectral envelope. A context of 21 frames 

approximately corresponds to the duration of a syllable.  

DCT 5-9-21 that has almost the same number of parameters 

of the previous ones, but covers a different area in the 

frequency-quenfrency plane of  the cepstral-time matrix 

excluding long time variations of the pitch and introducing 

some short time variations of the spectral envelope [5]. 

We did not investigate extensively the best settings for the DCT 

parameters,  focusing  only  on  the ones  that provide  the same  

Table 2.  %EER of the score combination of two SVM 

classifiers using different features on the 30sec tests of the 

NIST LRE 1996 (upper right) and NIST LRE 03 (lower left). 

Features 
SDC

7-1-3-7

DCT 

7-6-21

DCT 

5-9-21

DCT 

12-3-7

SDC 7-1-3-7  2.62 2.28 2.08

DCT  7-6-21 3.70 2.43 2.15

DCT 5-9-21 3.51 3.42 1.90

DCT  12-3-7 3.09 3.25 3.09

number of parameters, and/or have similar characteristics with 

respect to the commonly used features. 

 All the experiments aiming at comparing different sets of 

features have been performed on the NIST 1996 and 2003 

Language Recognition Evaluation (LRE) data [14-15]. 

 The GLDS SVM approach of [4], with a slight different 

normalization of the expanded vector b, has been used in the 

first set of experiments.  

 One gender independent model per language has been 

trained using the training and development sets of the 

CALLFRIEND corpus [15]. The SVM scores were converted to 

log-likelihood ratios [4].  

 The results of our experiments, given in Table 1, confirm 

that adding the static cepstral parameters to the SDC feature 

vector sensibly improves the recognition performance [2]. 

 The DCT 7-6-21 features (42+7 static parameters) give 

comparable results with respect to the SDC 7-1-3-7 (49+7 

parameters), while the DCT  12-3-7 features are the best for the 

10sec and 3sec tests. 

 Since it is well known that combining different sources of 

information typically improves LID performance, experiments 

have been performed with the pairwise combination of systems 

using the best four sets of features. The results obtained on the 

NIST LRE 2003 30sec tests are shown in lower left part of 

Table 2. The weights of the Neural Network used for the score 

combination have been trained on the test set of the 

CALLFRIEND corpus. 

 The combination of either SDC 7-1-3-7 or DCT 7-6-21 with 

DCT 12-3-7 – the most complementary set of features – gives 

similar results. It is also worth noting that, although the DCT 5-

9-21 features have the worst performance (see Table 1), their 

combination with DCT 12-3-7 achieve the best equal error rate, 

demonstrating their complementarities. The same considerations 

remain valid examining the upper right part of Table 2, showing 

the results on the NIST LRE 1996 30sec test data. The 10sec 

and 3sec tests confirm these results. 

5. INTER-SPEAKER VARIABILITY COMPENSATION 

In language recognition, errors are due not only to the similarity 

among the models of different languages, but also to the 

intrinsic variability of different utterances of the same 

language. The performance is heavily affected when a model, 

trained in a set of conditions, is used to test data collected from 

different speakers, microphones, channels, and environments. 

In this paper we will refer to all these mismatching conditions 

as inter-speaker variability. 

Model-based techniques have been recently proposed for 

speaker recognition, which are able to compensate speaker and 

channel variations without requiring the explicit identification 

and labeling of different conditions. These techniques share a 
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common background: modeling the variability of speaker 

utterances constraining them to a low dimensional space [16-

18]. In [19] we have proposed a solution for speaker 

recognition in the GMM framework that allows compensating 

the observation features rather than models parameters. 

Compensating features rather than models has the advantage 

that the transformed parameters can be used as observation 

vectors for classifiers of different nature and complexity. In this 

Section we recall the main steps of this approach for 

compensating the speaker intersession variability, and we show 

how it can be used as well for compensating inter-speaker 

variability within a language. 

In most state-of-the-art approaches, the speaker models are 

derived from a common GMM root model, the so called 

Universal Background Model (UBM), by means of MAP 

adaptation [1]. A supervector that includes all the speaker 

specific parameters can be obtained simply appending the 

adapted mean value of all the Gaussians in a single stream. The 

same can be done for the UBM, obtaining the UBM 

supervector. The distortions in the large supervector space can 

be summarized by a small number of parameters - the channel

factors [18] -, in a lower dimensional subspace. 

5.1 Model-domain adaptation  

Channel factors adaptation for an utterance i and a supervector 

k is performed, in the supervector model space, as follows:  

),()(),( kikki Ux  (1) 

where μ(i,k) and μ(k) are the adapted and the original supervector 

of GMM k respectively. U is a low rank matrix projecting the 

channel factors subspace in the supervector domain. The N-

dimensional vector x(i,k) holds the channel factors for the current 

utterance i and GMM k. The μ(k) supervectors are obtained by 

the classical MAP adaptation 

We have shown in [19] that since the vector x(i,k) accounts 

for the distortions produced in the supervector space by the 

intersession variability, it depends on the utterance i, but only 

weakly on the speaker model k. Thus, it can be estimated using 

the UBM, i.e. dropping the dependence on the GMM k. This is 

equivalent to set kiki )(),(
xx  and to apply the 

normalization: 

)()(),( ikki Ux                           (2) 

for all the models k that must be scored against utterance i.

For each test utterance i in equation (2), we estimate vector x(i)

with a single iteration of a technique called Probabilistic 

Subspace Adaptation (PSA) [20]. 

5.2 Estimation of the subspace U  

For speaker recognition, the channel factors subspace, modeled 

by the low rank matrix U, is assumed to represent the distortion 

due to the intersession variability. This distortion can be 

estimated analyzing how the models of the same speaker are 

affected, when trained with utterances collected from different 

channels or conditions. Thus, the U matrix is estimated with a 

large set of differences between models, obtained by MAP 

adaptation, using different utterances of the same speaker. 

 For language recognition we are interested, instead, in 

compensating  the  distortions  due  to  inter-speaker  variability  

Table 3. %EER Effects of inter-speaker variations compensation    

using GMM classifiers with DCT 7-6-21 

GMM without 

frame compensation 

GMM with 

frame compensation Corpus

30sec 10sec 3sec 30sec 10sec 3sec 

NIST 

1996
6.92 9.87 19.00 2.35 6.67 17.08 

NIST 

2003
9.25 12.5 20.16 4.08 8.07 18.17 

within the same language. Thus, the U matrix is estimated with 

a large set of differences between models generated using 

different speaker utterances of the same language.

5.3 Feature-domain adaptation  

Relying on the hypotheses that led to equation (2),  we assume 

that the acoustic space distortion, characterized by the vector 

x(i), can be estimated using the UBM rather than the speaker 

dependent model GMM k. Neglecting, for the sake of 

conciseness, the model index k, we rewrite (2) for each 

Gaussian component m of the supervector as: 

            mi
mm

i
m

)()(
xU  (3) 

where of μm
(i), μm and Um all refer to the m-th Gaussian of the 

GMM. The number of rows of the mean vectors and of the 

subspace matrix Um, is equal to the dimension of the input 

feature vector.

The adaptation of the feature vector at time frame t, O(t), is 

obtained by subtracting to the observation feature a weighted 

sum of the channel compensation offset values: 

          

m

i
mm

ii
ttt )()()(
)()()(ˆ xU  (4) 

where m(t) is the Gaussian occupation probability, and Um x
(i)

is the channel compensation offset related to the m-th Gaussian 

of the UBM model. In the actual implementation, the right side 

summation of (4) is limited, for the sake of efficiency, to the 

first best contributes only. 

 Our feature adaptation approach has shown in [19] to give 

the same benefits of the model domain adaptation. A system, 

based on this technique, was among the best participating to the 

NIST 2006 Speaker Recognition Evaluation. 

6. EXPERIMENTS USING GMM CLASSIFIERS

The subspace U matrix and two 512 Gaussian gender dependent 

UBMs have been trained using the training and development 

sets of the CALLFRIEND corpus [15]. A gender dependent 

model for each language in the NIST 1996 and 2003 LRE has 

been MAP adapted using the same data. The use of the UBM 

allows not only to speed-up both training and testing, but also to 

perform frame compensation for reducing inter-speaker 

variability. 

 During testing, the UBM gender model that produces the 

best likelihood is selected together with the set of its 

corresponding gender dependent language models. The final 

score for each language includes both T-normalization and log-

likelihood ratio normalization.  
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Table 4.  %EER of a GMM classifier using different features 

GMM with 

frame compensation Corpus
N. of 

param.
Features 

30sec 10sec 3sec 

56 SDC  7-1-3-7 1.88 5.65 15.48 

49 DCT  7-6-21 2.35 6.67 17.08 

48 DCT  12-3-7 4.43 7.73 16.38 

NIST 

1996 

50 DCT  5-9-21 2.75 7.40 19.16 

56 SDC  7-1-3-7 3.67 8,16 17,26 

49 DCT  7-6-21 4.08 8.07 18.17 

48 DCT  12-3-7 6.33 10.25 19.34 

NIST  

2003 

50 DCT  5-9-21 4.83 10.00 19.42 

Table 5.  %EER of the score combination of GMM and SVM 

classifier using different features (NIST LRE 03 30sec tests) 

CLASSIFIERS GMM SVM

Features 
SDC

7-1-3-7 

SDC

7-1-3-7

DCT

7-6-21 

DCT 

5-9-21

DCT 

12-3-7

SDC 7-1-3-7 - 2.52 2.59 2.58 2.50

DCT  7-6-21 3.41 2.75 2.66 2.50 2.84

DCT 5-9-21 3.25 2.94 2.85 2.76 3.26 G
M

M

DCT  12-3-7 3.83 3.16 3.76 3.02 3.40 

 Table 3 shows that the compensation of the inter-speaker 

variations provides relevant performance improvement, 

increasing with the length of the utterance. 

The comparison has been done for the DCT 7-6-21 features, 

which are the most similar to the SDC 7-1-3-7 ones.  

 Even for the GMM classifiers, a comparison of the 

performance on the NIST 2003 LRE tests using different 

features, reported in Table 4, confirm that the DCT 7-6-21 

parameters are a good alternative to the SDC ones. Moreover, 

while the combination of the scores obtained with GMMs using 

different features reduces only slightly the equal error rate, as 

shown in the first column of Table 5, a significant performance 

increase is obtained by combining GMM and SVM scores. In 

particular it is worth noting that there are two combinations of 

DCT features that give the same results of the combination of 

two SDC-based classifiers. 

7. CONCLUSIONS 

We have presented the cepstral-time features, an alternative to 

Shifted Delta Cepstra that, in our advice, has more perceptual 

grounds, has wider flexibility, and give similar results to 

MFCC+SDC with less parameters. We have shown that 

classifiers using sets of DCT features that are “orthogonal” in 

the frequency-quefrency plane present good complementarities, 

as shown by the performance increase obtained with their 

combination.  The results applying inter-speaker variations 

compensation confirmed the quality of the frame compensation 

approach already assessed on speaker recognition experiments. 

 The reported results are well aligned with the best ones 

recently reported on the NIST LRE 2003 task with more 

complex systems [1], and with the ones obtained without 

discriminative training in [2].  

 Work is in progress on the combination of this acoustic 

approach (possibly discriminatively trained) with a phonetic

one, where the phonemes of an utterance are estimated by the 

Loquendo ASR recognizer. 
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