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ABSTRACT

N-best or lattice-based tokenization has been widely used in
speech-related classi cation tasks. In this paper, we extended
the n-best tokenization approach to GMM-based language iden-
ti cation systemswith eithermaximum likelihood (ML) trained
or SVM-based language models. We explored the effect of n-
best tokenization in training or testing, and its interaction with
n-gram order and system fusion. We showed that for both
systems, the n-best tokenization gives good performance im-
provement. However, the SVM-based system bene ted from
both n-best training and test while the ML-trained system can
only bene t from n-best training. Results show n-best tok-
enization can reduce the relative EER of our best GMM-SVM
system by about 5% for 30s and 10s tests.

Index Terms— Language Identi cation

1. INTRODUCTION
In speech-based classi cation tasks, such as topic identi ca-
tion, a speech recognition module is typically used to tran-
scribe the spoken utterances into words or other tokens that
are then processed by the classi cation backend. Many re-
searchers have found that generating multiple possible tran-
scriptions, either via n-best hypothesis or with lattices, can
result in better classi cation performance. We called this the
lattice/n-best tokenization approach. The rationale is that key-
words not recognized in the top best are more likely to be rec-
ognized in the n-best hypotheses. Furthermore, the additional
n-best hypotheses allow a smoothed estimate of keyword oc-
currence. This approach has also been successfully applied
to phonotactic language identi cation (LID) system such as
phoneme recognition with language model (PRLM) system
[1, 2].
In this paper, we extended the concept to Gaussian mix-

ture model (GMM) based LID in which the phoneme recog-
nizer is replaced by a GMM [3] as tokenizer. We called this
the GMM-LM system. The PRLM and GMM-LM system
share similar structure in that LID decisions are made via the
languagemodelingmatch of the token sequence and that mul-
tiple tokenizers can be used. However, a GMM tokenizer pro-
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cesses each frame independently and typically, a large num-
ber of components, say 1024 or 2048, are used. These char-
acteristics can affect the effectiveness of the n-best tokeniza-
tion approach. Furthermore, different from the phonemes or
words, there are conceptually no “correct” GMM tokens. In-
stead, the indexes serve as the representation of the observa-
tions. In this sense, n-best tokenization can be viewed as a
more detailed representation or a “soft count” representation.
On a more practical level, because the number of unique to-
kens is large, smoothing is a much more signi cant problem
even for short n-gram history and a soft count would cause
more smoothing effect.
In addition to applying the n-best tokenization on GMM-

LM, we also applied this to our newer and better perform-
ing GMM-SVM system in which the language models are
replaced by support vector machines (SVMs) [4] that were
trained with n-gram counts. Because of the discriminative
nature of the SVMs, the effect of n-best tokenization can be
different. In fact, we found that in SVM-based systems, the
n-best tokenization is more useful during test than in train-
ing which is different from what was reported by other re-
searchers [5] with ML-based systems.
The rest of the paper is organized as follows. In the next

section, we describe the GMM-based n-best tokenization and
our approach for n-gram count estimation. We then describe
our LID systems in Section 3, followed by the results in Sec-
tion 4. The paper is concluded in Section 5.

2. N-BEST TOKENIZATION
In many speech recognition systems, n-best hypothesis means
the generation of N most likely sentence level hypotheses.
Because the GMM tokenizer in essence is nding the “best”
(in maximum likelihood sense) GMM index per observation,
our n-best tokenization for GMMs would instead generate the
n-best indexes per observation. To maintain a consistent no-
tation between 1-best and n-best tokenization, we denote the
1-best index for observation at time t, ot, as kt. That is,

kt = argmax
j

wjL(ot|j), (1)

where wj is the mixture weight and L(ot|j) is the likelihood
of the observation ot evaluated using the j-th Gaussian com-
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ponent. The 1-best tokenization can be viewed as a hard deci-
sion selection where the posterior probability of the indexes,
denoted as qt, can be expressed as

qt[j] =

{
1 if j = kt

0 otherwise (2)

The advantage of this representation is that it can be easily
generalized to n-best tokenization.
In GMM-tokenization-based LID, the sequential informa-

tion is captured using ML-trained n-gram models. The bi-
gram counts, denoted as c(i, j), can be calculated as follows

c(i, j) =
∑

t

qt−1[i]qt[j]. (3)

This can be generalized to higher order n-gram.
Under n-best tokenization, soft decisions are made on the

indexes. Instead of being an indicator function as in Eqn 2,
qt[j] can be replaced as the GMM posterior probability. That
is

qt[j] = p(j|ot) =
wjL(ot|j)∑
j

wjL(ot|j)
. (4)

N-gram counts can again be computed using Eqn 3. In the
case where only the topM indexes are selected, the posterior
probabilities for indexes not selected are set to zero. However,
this will create a posterior probability vector that does not
sum to one. Furthermore, if M is set to be one, this will
be inconsistent with the 1-best case. Instead, we de ne the
normalized posterior probability vector, q′t[k].

q′t[k] =
qt[k]∑
j

qt[j]
(5)

This normalized posterior probability can now be used in the
estimation of n-gram counts using Eqn 3.
The n-best tokenization can be applied to either training

alone, test alone or both and the selection of the number of
n-best, M , can be important. A large M creates a large to-
ken vector that slows computation and may potentially over-
smooth the estimate. In the case of SVM-based LID system
in which Inverse Document Frequency (IDF) weighting is ap-
plied, n-best tokenization may cause many n-grams to be par-
tially observed in different documents which can potentially
decrease the effect of the weighting. Experimental results of
using differentM are reported in the next few sections.

3. EXPERIMENTAL SETUP
3.1. Corpus
Our LID experiments were performed on the CallFriend cor-
pus and evaluated using the NIST 2003 evaluation set. The
twelve languages in this ID set include English, Arabic, Farsi,
Canadian French, Mandarin, German, Hindi, Japanese, Span-
ish, Korean, Tamil and Vietnamese. For English, Spanish and

Mandarin, data from two dialects are available. For each of
the 15 languages/dialects, the training data consist of 20 30-
minute, two-sided conversations. The NIST 2003 evaluation
set includes test utterances with 30s, 10s and 3s durations, but
our experiments were mostly focused on the 30-second sub-
set. The NIST 2003 development set consists of 2639, 2674
and 2677 segments of 30s, 10s and 3s durations, respectively.
The 2003 evaluation set consists of 1280 utterances for each
duration in which 960 come from the CallFriend corpus. Fur-
thermore, 80 of the non-CallFriend utterances are Russian and
were excluded in our experiments so that we can compared
with our previously reported results [4].

3.2. Experimental Settings and Baselines
Our baseline system consisted of 4 major blocks: frontend,
tokenizers, language models and back-end fusion. The fron-
tend generated acoustic features in shifted delta cepstral co-
ef cients with con guration 7-1-3-7 [6] plus 7 static MFCC
coef cients. During training, silence detection was performed
with a two-state, GMM-based silence detector together with
the energy information from both sides of a conversation. Only
the two-state GMM-based silence detector was used during
test. 12 GMM-tokenizers, one for each language, with 2048
components were trained using language speci c data. After
the data were tokenized, language models were trained using
the tokenized sequence for each target language. This resulted
in 12 × 12 models. Backend fusion [3] was achieved by con-
catenating all the scores into a “super-vector” that were then
transformed by a 144 × 11 Linear Discrimination Analysis
(LDA) matrix. The transformed score vectors were treated
as features and processed by a Gaussian classi er. Poste-
rior probabilities from the Gaussian classi er were used as
the classi cation scores. Both the LDA coef cients and the
Gaussian classi er parameters were trained with the develop-
ment data.
Two different language modeling approaches were tested.

In the rst case, traditionalmaximum likelihood-based n-gram
language models were trained, denoted as GMM-LM, using
the SRILM toolkit withWitten-Bell backoff [7]. For the SVM-
based LM, denoted as GMM-SVM, n-gram features were weighted
by the inverse document frequency (IDF) [8] and trained with
linear kernel using the SVM-light toolkit [9]. For both sys-
tems, the LM scores can be fused with the GMM acoustic
scores.
While our default number of mixture components is 2048

for both GMM-LM and GMM-SVM, the number of unique
n-grams can become too large for SVM training. For bigram,
a minimum n-gram count of 70 was set to reduce the number
of n-gram features.
Our baseline GMM-LM system, fused after 12 tokeniz-

ers and the acoustic scores gave an EER of 4.92% while our
GMM-SVM systemwith similar setting gave an EER of 4.16%.
This is comparablewith GMM-based systemswith ML-trained
acoustic scores reported by other systems [10, 11].
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4. EXPERIMENTS
4.1. Effect of N-Best Tokenization on GMM-SVM

N-best Unigram Bigram
1trn-1dec 8.6 10.8
1trn-5dec 8.2 9.9
5trn-5dec 8.0 9.5

Table 1. Averaged EER(%) of N-Best tokenization in training
and/or testing after fusion in unigram GMM-SVM system for 30s
test (average for all tokenizers)

The results of applying N-best tokenization are tabulated
in Tables 1 and 2. They are the EERs averaged across to-
kenizers, meaning that the results are the average of using
only a single tokenizer before fusion (with backend). Only
LM scores were used in obtaining these results (Fusion with
acoustic scores will be discussed in Section 4.5).
The rst two rows of Table 1 compares the 1-best and

5-best tokenization in testing with unigram and bigram with
the test duration of 30s using the GMM-SVM system. “1trn-
1dec” means 1-best in both training and test, and these results
serve as the baseline. The second row shows the result of us-
ing 5-best during test only. We notice that while the improve-
ment from using n-best tokenization is higher in bigram, uni-
gram is still superior. The third row shows the results of using
5-best tokenization in both training and test. To avoid the is-
sue of smoothing IDF weights, we used the same IDF weights
obtained from the 1-best tokens. Two things are observed: 1)
Using n-best training further improves performance. 2) Con-
sistent with test only, more improvement can be seen in bi-
gram but unigram is better. Because of these, unigram will be
used to obtain all GMM-SVM results reported in the rest of
this paper.

Duration 1-best 2-best 5-best
30s 8.6 8.2 8.0
10s 18.0 17.5 17.3
3s 30.6 30.1 29.9

Table 2. Averaged EER(%) of N-Best tokenization in training and
testing after fusion in unigram GMM-SVM system (average for all
tokenizers)

Table 2 shows the effect of n-best tokenization on differ-
ent test duration. We notice that across different durations, n-
best tokenization is better than 1-best tokenization. Further-
more, the incremental gain from 2-best to 5-best is smaller
than that from 1-best to 2-best, suggesting that further in-
crease ofM to above 5 may give only very limited gain.

4.2. Selection of IDF Vector

In the results reported above, we xed the IDF weighting to
the one obtained using the 1-best tokens. IDF weighting can

also be obtained using the n-best tokens. One potential prob-
lem is that asM increases, more n-grams are observed in each
document and thus, reduce the IDF weights. Table 3 tabulates
the results of using IDF weightings obtained from different
M during training.

N(trn) N(test) IDF.N IDF.1
1 1 - 8.61
2 2 9.07 8.21
5 1 12.06 8.47
5 5 11.55 7.98

Table 3. Averaged EER(%) in unigram GMM-SVM versus
IDF.N/IDF.1 at various numbers of N-Best training and testing for
30s test (average for all tokenizers). “N(trn)” and “N(test)” refer to
N value of n-best during training and testing, respectively.

As can be seen, using the IDF weighting from 1-best to-
kenization is instrumental in allowing n-best tokenization in
training. This suggests that for other form of feature weight-
ing that implicitly counts feature presence (such as in Witten-
Bell backoff in calculating backoff factors), care must be taken
to avoid over-smoothing of these weights.

4.3. Effect of N-Best Tokenization on GMM-SVM after
Fusion

Fig. 1. EER(%) of of N-Best tokenization in testing alone and in
both training and testing after fusion versus the number of tokenizers
in unigram GMM-SVM system. “itrnjdec” in the legend stands for
i-best in training and j-best in testing.

Most LID systems fuse the scores from multiple tokeniz-
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ers to make the nal decision. The fusion process can be
thought of as integrating more information as well as smooth-
ing the scores. Fig. 1 shows the effect of 5-best tokenization
across the different number of tokenizers for the GMM-SVM
unigram system. The line with squares is the baseline with
1-best training and test, the line with circles shows the perfor-
mance with 1-best training and 5-best test, and the line with
triangles shows the performance of 5-best in both training and
test. We can see that in general, more tokenizers improve per-
formance. However, when n-best tokenization is applied only
in test only (circles), performance may not improve as the
number of tokenizers is above 9 for 10s and 5 in 3s test. More
stable improvement is observed for the 5-best training and test
case (triangles).

4.4. N-best Tokenization in GMM-LM

1-best 5-best
Ave. per tokenizer 13.2 10.85
Fused 12 tokenizers 6.58 6.1

Table 4. EER(%) of N-best tokenization in the bigram GMM-LM
system for 30s test.

N-best tokenization can also be applied to maximum like-
lihood estimated GMM-LMs. Our best GMM-LM system
used bigram LMs instead of unigram. Table 4 shows the
performances in terms of EER of different n-best GMM-LM
system on 30s test utterances before and after fusion1. Inter-
estingly, the gain is more signi cant than GMM-SVM. The
possible reason is that higher order n-gram in GMM-LM can
bene t more from the n-best tokenization.

4.5. Combination of GMM-SVM with Acoustic Scores

1-Best 5-Best
Duration AC alone LM LM+AC LM LM+AC
30s 7.3 5.4 4.2 5.00 3.9
10s 11.4 14.7 10.7 13.6 10.3
3s 21.7 26.4 22.2 26.8 22.3

Table 5. EER(%) of N-Best tokenization in training and testing in
unigram GMM-SVM system after fusion with acoustic

Recent work in LID has shown that using acoustic alone
can give very good performance [10, 11]. The score from
LMs can be fused with the GMM acoustic scores with the re-
sults shown in Table 5. Results obtained with the LMs are
denoted as LM. It is interesting that the relative strength of
LM increases as the test duration increases. For 30s and 10s
tests, the combination of LM and acoustic scores outperforms
either one alone. Furthermore, the improvement obtained
from using n-best tokenization is still observed after the fu-
sion with acoustic score. Overall, for both 30s and 10s test,

1N-best tokenization was applied on training only.

the n-best tokenization resulted in about 5% relative improve-
ment in EER but a small degradation for 3s test.

5. CONCLUSIONS
In this paper, the n-best tokenization approach is extended to
GMM-based LID systems and its interaction with n-gram or-
der, system fusion and language model training is explored.
It is found that the approach is in general applicable to dif-
ferent LID settings but it is more useful in higher order n-
gram and single tokenizer. This technique is less effective on
shorter utterance as the importance of LM score decreases.
Under the best con guration in which the GMM-SVM sys-
tem is combined with the GMM acoustic scores, n-best tok-
enization gave a relative reduction of 6% in ERR on 30s and
4% on 10s.
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[5] Pavel Matějka, Petr Schwarz, Lukav̌s Burget, and Jan
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