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ABSTRACT
This paper describes the speech recognizers developed to

transcribe European Parliament Plenary Sessions (EPPS) in En-
glish and Spanish in the 2nd TC-STAR Evaluation Campaign.
The speech recognizers are state-of-the-art systems using mul-
tiple decoding passes with models (lexicon, acoustic models,
language models) trained for the different transcription tasks.
Compared to the LIMSI TC-STAR 2005 EPPS systems, rela-
tive word error rate reductions of about 30% have been achieved
on the 2006 development data. The word error rates with the
LIMSI systems on the 2006 EPPS evaluation data are 8.2%
for English and 7.8% for Spanish. Experiments with cross-site
adaptation and system combination are also described.
Index Terms – Speech recognition

1. INTRODUCTION
The TC-STAR project, nanced by the European Commis-

sion under the Sixth Framework Program, is envisaged as a
long-term effort to advance research in all core technologies for
Speech-to-Speech Translation. The project objectives are to sig-
ni cantly reduce the gap between human and machine transla-
tion performance. The second evaluation of speech recognition
technologies was carried out in Jan-Feb 2006. As in the rst
year evaluation held in March 2005, speech recognition sys-
tems were tested for 3 languages (English, Spanish, Mandarin)
and multiple tasks (European Parliament, Spanish Parliament,
broadcast news). This second evaluation had several new eval-
uation conditions. First, automatic segmentations of the audio
data were used (last year the machine translation systems im-
posed the use of manual segmentations). Second, although the
Spanish test data came from two sources, EPPS and Spanish
Parliament (Cortes), it was required that the same system be
used to process all data. Thirdly, a requirement of translation
systems was that the recognizer produce a case sensitive, punc-
tuated output.
This paper describes the improvements made to the LIMSI

EPPS systems in preparation for the 2006 TC-STAR evalua-
tion, and reports on experiments carried out with system com-
bination.

2. DATA DESCRIPTION
About 90 hours and 100 hours of audio recordings are avail-

able respectively for English EPPS and Spanish EPPS and Par-
liament training data, dating from 2004 and 2005. Between 3
and 4 hours of data were reserved for use as a development set
(see Table 1, right). The English development data are from
June 2005 and the English test data from September 2005; the
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Spanish EPPS development data are from June-July 2005 and
the Spanish Cortes development data are from December 2004,
with the test data from September-November 2005. The task-
speci c text data are comprised of the minutes of the European
Parliament also known as the Final Text Editions. The textual
training data date from April 1996 through May 2005. Table 1
summarizes the available training and test data for the 2006
evaluation.
The speech recognition evaluation conditions required au-

tomatic speech/nonspeech detection and segmentation into
sentence-like units. The primary error metric was the case in-
sensitive word error rate (WER) for English and Spanish. Sys-
tems were also required to output case-sensitive texts with punc-
tuation marks, which were also scored.

3. SPEECH RECOGNIZER OVERVIEW
The speech recognizer for the Spanish EPPS data uses the

same basic modeling and decoding strategy as in the LIMSI
English broadcast news system [4]. Each phone model is
a tied-state left-to-right CD-HMM with Gaussian mixtures.
The triphone-based context-dependent phone models are word-
independent but position-dependent. The tied states are ob-
tained by means of a decision tree. The acoustic and language
models are language and task speci c. Decoding is carried out
in four steps (2 more passes than the 2005 system), with unsu-
pervised acoustic model adaptation between each step.
Two variants of the speech segmentation and clustering al-

gorithm based on an audio stream mixture model [4] were de-
veloped. Both make use of Gaussian mixture models (GMMs)
trained on 1-2 hours of English Hub4 data for speech, speech
over music, noisy speech, pure-music and other background
conditions. First, the non-speech segments are detected and
rejected using the ve GMMs representing speech. For the
baseline partitioner an iterative maximum likelihood segmen-
tation/clustering procedure is then applied to the speech seg-
ments. Each segment cluster is assumed to represent one
speaker in a particular acoustic environment and is modeled by
a GMM. The objective function is the GMM log-likelihood pe-
nalized by the number of segments and the number of clusters,
appropriately weighted. Four sets of speech GMMs are then
used to identify telephone segments and the speaker gender.
Segments longer than 30s are chopped into smaller pieces by
locating the most probable pause within 15s to 30s from the
previous cut. For the second partitioner, the iterative GMM
clustering is replaced by BIC clustering, and an additional
GMM-based speaker identi cation clustering stage has been
added. This multistage system reduces speaker error by up
to 50% relative to BIC alone on French and English broad-
cast news data [1]. The result of the procedure is a sequence
of non-overlapping segments with cluster, gender and tele-
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Training/ Audio data Text data
Task #Sessions Size Epoch (words)
English texts 63 91h Apr04 - 34M
EPPS transcripts Jan05 690k
Spanish texts 63 61h Apr04 - 36M
EPPS transcripts Jan05 471k
Spanish texts 24 38h Sep04 - 47M
Cortes transcripts Oct04 268k

Development and Test Data
Task Data type Size Epoch
English Dev 3.2h Jun05
EPPS Eval 3.2h Sep05
Spanish Dev 2.4h Jun-Jul05
EPPS Eval 3.3h Sep-Nov05
Spanish Dev 3.9h Dec04
Cortes Eval 4.0h Nov05

Table 1: Summary of available audio and textual training data (left) and 2006 development and evaluation data (right).

Language English Spanish
P1 5k / 5k 2.0k / 2.0k
P2 28k / 11.5k 5.6k / 8.1k
P3 18k / 11.7k 6.3k / 8.7k
P4 18k / 11.5k 6.3k / 8.7k

Table 2: Acoustic models used in the different decoding passes.
The #contexts and # tied states are given for each model set.

phone/wideband labels.

4. ACOUSTIC MODELING
Standard HMM training requires an alignment between the

audio signal and the phone models, which usually relies on an
orthographic transcription of the speech data and a good phone-
mic lexicon. It is common to Viterbi align the orthographic tran-
scriptions with the signal using existing models (via the lexicon)
to produce a time-aligned phone transcription. This alignment
generally also uses manual segmentations into speaker turns or
sentence-like units.
In this work a revised acoustic model training procedure is

used, which relies on an automatic segmentation and speaker la-
beling, instead of the manual annotations. This revised method
aligns the words in the reference transcripts with an automatic
segmentation created by the audio partitioner. This results in a
signi cantly simpli ed training procedure which is also more
coherent with the subsequent decoding steps. This homoge-
neous (simpli ed) method has been applied to all tasks and lan-
guages, and can optionally allow non-speech events to be in-
serted during the alignment step.
Table 2 summarizes the characteristics of the various acous-

tic model sets used in the four decoding stages for the evaluation
systems. All acoustic models are MLLT-SAT trained, gender-
dependent, tied-state position-dependent triphone models with
backoff to right/left context and context-independent models.
Separate cross-word and word-internal statistics are used to se-
lect the contexts to be modeled, and language-speci c decision
trees are used to tie the model states using a divisive decision
tree based clustering algorithm.
The English acoustic models were trained on about 90 hours

of audio training data from the EPPS English distributed by
RWTH. The rst pass models cover 5k triphones with 5k tied
states (32 Gaussians per state). The second pass models use a
reduced phone set and were trained on 600 hours of BN data,
150h with manual transcripts, 450h of selected TDT2,3,4 data
(via light supervision) and adapted with the EPPS data. The
third and fourth pass models are different iterations of MMIE-
trained models, each with about 18k triphones and 11.5k states
(32 Gaussians per state).
The Spanish acoustic models were trained on about 100

hours of audio training data from EPPS and Cortes corpora. The
rst fast models cover 2k contexts with 2k tied states. The sec-
ond pass models use a reduced phone set (merging /s,z/ and the

Language English Spanish
#words 60k 65k
#phones 48+3 / 38+3 27+3 / 25+3
#prons 74k / 74k 94k / 78k

Table 3: Language-speci c pronunciation lexicons.

two r’s). The third and fourth pass models are different iter-
ations of MMIE-trained models, each with about 6k triphones
and 9k tied states (32 Gaussians per state).

5. PRONUNCIATION LEXICA

The English pronunciations are based on a 48 phone set (3
of them are used for silence, ller words, and breath noises).
In the reduced phone set, pronunciations are represented with
38 phones, formed by splitting complex phones. A pronun-
ciation graph is associated with each word so as to allow for
alternate pronunciations, including optional phones. The 60k
case-sensitive vocabulary contains 59993 words and has 74k
phone transcriptions. Compound words for about 300 fre-
quent word sequences subject to reduced pronunciations were
included in the lexicon, as well as the representation of 1000
frequent acronyms as words.

The Spanish pronunciations are based on a 27 phone set (3
of them are used for silence, ller words, and breath noises). A
second reduced phone set dictionary merges variants for s/z and
r/Rwhich are poorly distinguished by the common word phone-
tization script,. Pronunciations for the case-sensitive vocabulary
are generated via letter to sound conversion rules, with a lim-
ited set of automatically derived pronunciation variants. While
the rules generate reasonable pronunciations for native Span-
ish words and proper names, other words are more problematic.
The Unitex (www-igm.univ-mlv.fr/unitex/) Spanish dictionary
was used to locate likely non-Spanish words, which belong to
several categories: typos (which were xed at the normalization
level); Catalan words, borrowed words like ‘sir’ or ‘von’, non-
Spanish proper nouns which were hand-phonetized by a native
speaker; and acronyms. Non-Spanish proper nouns were the
most dif cult to handle, especially those of Eastern European
origin where the variability in the audio data shows that native
Spanish speakers do not necessarily know how to pronounce
them. The decision taken was to use the perceived phonetiza-
tion for the names which were represented in the audio data, and
use the native speaker’s intuition for the rest. Although includ-
ing non-Spanish phones to cover foreign words was considered,
these were too infrequent to estimate reliable models so they
were replaced with the closest Spanish phone. Acronyms that
tend to be pronounced as words were veri ed by listening to the
audio data or phonetized by a native speaker. The nal lexicon
has 94871 pronunciations for 65004 entries.
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Language English Spanish
Dev06 data EPPS EPPS/Cortes
#words 60k 65k
OOV 0.3% 0.6%
Transcripts 690k 471k / 268k
Texts 33.5M 36M / 47M
BN+CNN 293M+180M
4g ppx 88 80 / 102

Table 4: Summary of EPPS language models.

6. LANGUAGE MODELING
For all systems, n-gram language models were obtained

by interpolation of backoff n-gram language models using the
modi ed Kneser-Ney smoothing (as implemented in the SRI
toolkit [2, 8]) trained on separate subsets of the available lan-
guage model training texts. The characteristics of the language
models are summarized in Table 4. A neural network LM [7]
was trained on the EPPS transcripts and texts, and interpolated
with the 4-gram back-off LMs.
Since the text processing is case sensitive, a decision must be

taken as to what the true case of each sentence-initial word is.
Moreover for some texts the caseing is vague (due to emphasis
or segmentation errors), and the caseing of all words needs to be
reconsidered. In order to be able to attribute the correct case for
the sentence-initial word an interpolated LM was constructed
with a set of texts after removing the rst word of each sentence.
Caseing is added to the original sentence by creating a graph
with all possible caseings for all words with multiple caseings,
and parsing the graph using the interpolated LM.
Word lists for English and Spanish selected by choosing the

n most probable words after linear interpolation of unigram
LMs trained on the different text sources so as to minimize
the perplexity on the dev data. n is chosen to minimize the
OOV ratio while keeping a reasonable size and correctness of
the words. For Spanish, a 65k case-sensitive word list was cho-
sen as a good compromise, yielding an OOV rate of 0.6% on the
dev06es data. The 2006 English word list is also case-sensitive
and contains 60k words, and has an OOV rate of about 0.3%.
The English language models result from the interpolation

of component LMs trained on 4 sources: 690k words of au-
dio transcriptions (cut-off 0-0-0); 34M words of Parliamentary
texts (cut-off 0-0-1); 180M words of CNN captions [01/2000-
31/05/2005]; and 293M words of Broadcast news transcriptions
(cut-off 1-1-2). The mixture weights where chosen to minimize
the perplexity of the development data. The 4-gram perplexity
on the dev06en data is about 88.The LM contains about 8.1M
bigrams, 32.8M trigrams and 24.2M 4-grams. The perplexity is
reduced to 75 with the NN LM .
For Spanish, component language models were trained on 6

text sources: European Parliament transcriptions (471K words);
Spanish Parliament transcriptions (268K words); European Par-
liament nal text editions (FTE) 1996-1999 (15Mwords); Euro-
pean Parliament FTE 1999-2004 (19M words); European Par-
liament FTE 2004-2005 (2M words); and Spanish Parliament
texts (47M words). The texts were normalized to a common
form, and names with multiple written forms were mapped
to the most frequent one (Juncker/Junker, Breshnev/Brezhnev).
Several processing steps were applied to transform the texts
closer to a ’spoken’ form. (Although originating from speeches,
the texts were transformed into a written form for publication
on the web sites.) The main normalization steps are similar to
those for English [4]: separation of punctuation from words; ex-

Decoding Pass
WER(%) Pass1 Pass2 Pass3 Pass4
English EPPS 15.5 11.6 10.0 9.8
Spanish EPPS 10.0 8.3 7.0 6.9

Table 5: Word error rates (%) after each decoding pass on the
English and Spanish EPPS Dev06 data.

System Feb05 Mar06
Language Task Dev06 Dev06 Eval06
English EPPS 14.0 9.8 8.2
Spanish EPPS 9.8 6.9 7.8

Cortes 13.3

Table 6: Word error rates (%) on the English and Spanish
Dev06 and Eval06 data.

pansion of abbreviations (Sr.→ Señor); treatment of numerical
expressions (art´culo 82.1→ art´culo ochenta y dos uno, 3.900
millones→ tres mil novecientos millones). Acronyms not found
in the word list were split into their component letters in order
to get an “unknown spelled acronym” model.
Independent models were estimated on each text source and

then interpolated with coef cients estimated to minimize the
perplexity on the development data. The perplexity of the EPPS
dev06 data with the 4-gram model is 79.5, and the perplexity of
the Spanish Parliament dev data is 102.4. The perplexities with
the NN LM are 71.2 and 92.2 respectively.

7. DECODING
Word recognition is performed in four passes, where each de-

coding pass generates a word lattice with cross-word, position-
dependent, gender-dependent AMs, followed by consensus [6]
decoding with 4-gram and pronunciation probabilities. Unsu-
pervised acoustic model adaptation is performed for each seg-
ment cluster using the CMLLR and MLLR [5] techniques prior
to each decoding pass. The lattices of the last two decoding pass
are rescored by the neural network (NN) LM interpolated with
a 4-gram backoff LM. The total decoding time is about 6xRT.
More speci cally, the decoding steps are:
1) Initial hypothesis generation using small cross-word EPPS
acoustic models and audio partitioner 1 (� 1.0xRT);
2) 2 class MLLR adaptation of large BN+EPPS acoustic mod-
els (AMs) for English and large EPPS+Cortes AMs for Spanish,
each with a reduced phone set, and audio partitioner 2;
3) Data driven MLLR adaptation with large EPPS MMIE-
trained AMs for English and large EPPS+Cortes MMIE AMs
for Spanish, neural network LM interpolated with a 4-gram LM;
4) Data driven MLLR adaptation with large English EPPS
MMIE-trained AMs and large Spanish EPPS+Cortes MMIE
AMs (the MMIE AMs are different from step 3), NN LM in-
terpolated with a 4-gram LM.
Table 5 gives the word error rates on the EPPS dev06 data

for after each decoding pass. The word error after the rst real-
time decoding pass is 15.5% for English and 10% for Spanish.
The largest improvement is obtained in the second pass (25%
and 17% relative respectively for English and Spanish), with
smaller gains in the subsequent passes.
Table 6 gives the recognition results for the evaluation sys-

tems on the TC-STAR Dev06 and Eval06 data sets. The WERs
of the Feb05 systems on the Dev06 data are also given. The
overall Spanish WER is 10.7%. Relative word error rate re-
ductions of about 30% were obtained for both the English and
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Data Method Systems WER Rel.Gain
Dev06en Rover1 LIMSI06v3, IBM06v3, RWTH3, IRST3, UKA2 9.4 -15%

Adapt IBM06v2 + LIMSI06v3 9.1 -15%
Rover1 + Adapt + LIMSI06v3 9.0 -16%
Rover2 LIMSI06v4, IBM06v4, UKA4, RWTH4, IRST4 8.7 -14%
Rover2 + Adapt + LIMSI06v4 8.7 -14%

Dev06es Adapt IRST05, LIMSI05e 8.7 -5%
Rover1 LIMSI06v2, RWTH06v2, IBM05, IRST05 6.6 -8%
Rover2 LIMSI06v2, RWTH06v2, IBMv3, IRST06 5.8 -19%

Table 7: Some system combination results on dev06en (top) and dev06es (bottom).

Spanish systems on the Dev06 EPPS data. In a post-evaluation
study, the audio partitioner was modi ed to not throw away mu-
sic segments, which reduced the overall Spanish WER to 10%.

8. TC-STAR SYSTEM COMBINATION
Various decoding and system combination methods were

studied, based on cross-site adaptation and Rover-like combi-
nation. A subset of the results are reported in Table 7. The rst
entry shows the result of Rover combination [3] of ve systems
with word error rates ranging from 11 to 16%. The combina-
tion results in a 15% gain relative to the best system (10.7%).
Cross-site adaptation, i.e. adapting LIMSI models using a tran-
scription from another partner (2nd entry) or from a combina-
tion of systems (third entry), is seen to be very ef cient as the
resulting word error rate is always lower than (or equal to) the
WER of the adaptation transcripts, and is considerably lower
than the WER of the stand alone system (with relative gains of
up to 15%). Even though there were signi cant improvements
for all systems used in Rover2 (WERs ranging from 10.1 to
13%), almost the same relative gain is obtained as with the sys-
tems used in Rover1. Similar observations can be made for the
Spanish systems, where substantial improvements were made
to the systems used in the second Rover.

9. PUNCTUATION
Automatic caseing and punctuation tools have been devel-

oped for English and Spanish. These modules use both linguis-
tic and acoustic information (essentially pause and breath noise
cues) to add punctuation marks in the speech recognizer output
which can be either a single best hypothesis or a word lattice.
Separate language models were constructed for speech recog-
nition and punctuation, the former explicitly modeling speech
characteristics and dis uencies, and the latter modeling punctu-
ation, but without the dis uencies. Starting with the recognizer
hypotheses with time-marks (CTM le), pauses longer than 1.7s
are located and a word graph is created for each speech segment.
All possible caseings of each word are added to the graph, as
well as optional sentence breaks at each pause, and optional
punctuation marks ( ,COMMA and .PERIOD) after each word.
The resulting augmented word graph is then decoded with a
punctuated, case sensitive LM. (The LIMSI punctuator was not
used in the eval submission but was used for SLT).

10. CONCLUSIONS
This paper has summarized the progress made in preparation

for the second annual TC-STAR speech recognizer evaluation
for the EPPS task in English and Spanish. The baseline perfor-
mance was that of the Feb’05 systems on the 2006 development
data. For English the initial word error rate was reduced from
14.0% to 9.8% and for Spanish the word error rate was reduced

from 9.8% to 6.9%. The additional features and improvements
to the English and Spanish features include automatic segmen-
tation, four decoding passes with unsupervised adaptation, two
phone sets per language (full and reduced), and MLLT, SAT,
MMIE training. Large word error rate reductions of about 30%
were obtained compared to last year’s system.
Innovations contributing to this large performance improve-

ment came from new strategies for unsupervised AM adaptation
based on different type of models and different segmentation
schemes. Signi cant improvement is due to the use of more
data to build larger and more accurate models, and improved
within site and cross-site system combination. One idea grow-
ing in popularity is to use alternative models and segmentations
in successive decoding passes so as to reduce the impact of the
recognition errors, segmentation errors and clustering errors on
the adaptation process. Improvements also came from better
pronunciation modeling, the use of additional acoustic features,
improved SAT model estimation and improved discriminative
training methods, and improved neural network LMs.
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