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ABSTRACT

Language recognition is typically performed with methods that
exploit phonotactics—a phone recognition language modeling
(PRLM) system. A PRLM system converts speech to a lattice of
phones and then scores a language model. A standard extension to
this scheme is to use multiple parallel phone recognizers (PPRLM).
In this paper, we modify this approach in two distinct ways. First,
we replace the phone tokenizer by a powerful speech-to-text sys-
tem. Second, we use a discriminative support vector machine for
language modeling. Our goals are twofold. First, we explore the
ability of a single speech-to-text system to distinguish multiple lan-
guages. Second, we fuse the new system with an SVM PRLM sys-
tem to see if it complements current approaches. Experiments on the
2005 NIST language recognition corpus show the new word system
accomplishes these goals and has significant potential for language
recognition.

Index Terms— speech processing, natural languages

1. INTRODUCTION

An enduring method for language recognition has been the parallel
phone recognition language modeling (PPRLM) system [1]. This
system performs recognition with multiple phone decoders that have
a null grammar. From the resulting phone sequences, language mod-
els are applied for a set of target languages. Ideally, the phone de-
coder languages should contain the target languages, but even if this
is not the case, PPRLM performs well.

A novel extension to the PPRLM system was to add more de-
coder information via lattices [2]. Lattices provide additional infor-
mation which can be weighted by the posterior of alternate hypothe-
ses. Since PPRLM relies on a null grammar, the phone acoustic
models determine this posterior probability. Extensions to the stan-
dard PPRLM perplexity-based scoring with this posterior informa-
tion are straightforward [2].

In analogy with the high-level feature paradigm in speaker
recognition [3], other token sources should be considered for lan-
guage recognition. In some applications, a word recognizer may
already be in use for speech processing and could be leveraged for
language recognition. Also, in high-level speaker recognition, word
sequences were found to characterize speakers and provide signif-
icant complementary information [4]. Word tokens, in a certain
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sense, model long context phone n-grams, and analyzing this struc-
ture should be complementary to the phone-based PPRLM approach.

Traditionally, word systems have been used for language recog-
nition in the following manner [5]. For a set of target languages,
speech-to-text (STT) systems in all of these languages are assumed
to be available. For a speech input, the STT systems are all applied to
produce log-likelihood scores per target language. These scores are
combined, by a log-likelihood ratio combination or fusion, to pro-
duce posterior probabilities of the target languages which are then
used for language recognition. Although this STT language recog-
nition approach is very accurate [5], the computational complexity
is large. In addition, STT systems must be available in the target
languages of interest—a challenging task.

As a novel alternative, we propose using the lattice output of a
single STT decoder. This new configuration has substantially lower
complexity than the standard approach and requires less language
resources to build. The lattice output is used in a discriminative sup-
port vector machine (SVM) for language recognition. SVMs can ef-
fectively work with sparse data and include standard PRLM scoring
as a special case.

The outline of the paper is as follows. In section 2, we discuss
language recognition using lattices. Section 3 describes the appli-
cation of SVMs to language recognition. Finally, in section 4, we
present a series of experiments that uses the new techniques on the
NIST language recognition evaluation (LRE) corpus.

2. LANGUAGE RECOGNITION USING LATTICES

Suppose we have an STT decoder, language models p(·|·, L) for
target languages L, and the most-likely hypothesis (a sequence of
words) produced by the STT decoder, W ∗. The standard PRLM ap-
proach [1] is to find the language that maximizes the log likelihood,

L∗ = argmax
L

log p(W ∗|L)

= argmax
L

1

N

NX
i=1

log p(wi|wi−(n−1), · · · , wi−1, L)
(1)

where N is the number of words in the sequence W ∗, n is the n-
gram order, and W ∗ = w1, · · · , wN .

An alternate expression of (1) can also be used. We can construct
a joint probability from W ∗ using counts of n-grams,

p(ŵi, wi|W ∗) =
count(ŵi, wi|W ∗)P
j count(ŵj , wj |W ∗)

ŵi = wi−(n−1), . . . , wi−1

(2)
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where the sum in (2) is performed over all unique n-grams in the ut-
terance, and count(ŵi, wi|W ∗) is the number of times the n-gram,
ŵiwi, occurs in the sequence W ∗. We have introduced the notation,
ŵi, to denote history (or context) of wi in the sequence W ∗. Then,
(1) can be expressed using (2) and the negative log of the perplexity,
sL,

L∗ = argmax
L

sL(W ∗)

sL(W ∗) =
X

i

p(ŵi, wi|W ∗) log p(wi|ŵi, L).
(3)

Note that in the equation, p(ŵi, wi|W ∗) is a joint probability, and
the sum is over all unique n-grams in W ∗. The quantity sL in (3) is
maximized when the target language model has the same distribution
as the language model from the utterance, see [6]. Intuitively, from
an information theory perspective, (3) measures the (negative) ex-
pected bit length of coding a source with distribution p(·|W ∗) using
an assignment of log p(·|·, L) bits.

Standard PRLM scoring (3) was extended to lattices by Gauvain,
et. al. [2], by taking the expectation of sL over the set of hypotheses
W in the lattice. Performing this operation gives

EW [sL(W )] =
X
ŵw

EW [p(ŵ, w|W )] log p(w|ŵ, L) (4)

where in this case the sum is performed over the unique n-grams,
ŵw, in the lattice. An alternate expression for (4) is

EW [sL(W )] =
X

W∈W

p(W |X,Λ, Φ)sL(W ) (5)

where Λ is the STT acoustic model, Φ is the STT language model,
and X are the acoustic observations. The first formulation is useful
since we can produce expected counts of different n-grams across
a lattice using a forward-backward algorithm, apply (2), and then
insert the resulting probabilities in (4). The second formulation (5)
is interesting since it explicitly shows the weighting of different log
perplexity scores by the posterior of the hypothesis and their depen-
dence on the acoustic and language model of the STT decoder.

A question in interpreting (5) is how the posterior,
p(W |X,Λ, Φ), should be computed for an STT system. In
the general formulation, the STT system would produce an acoustic
model score, p(X|W, Λ) for the input X, and a language model
score, p(W |Φ). These would be weighted and combined to produce
a score

α log(p(X|W, Λ)) + β log(p(W |Φ)) (6)

Computing the posterior p(W |X,Λ, Φ) is straightforward, and we
introduce another factor, γ, to obtain

p(W |X,Λ, Φ) =
p(X|W,Λ)α/γp(W |Φ)β/γP

W ′∈W
p(X|W ′, Λ)α/γp(W ′|Φ)β/γ

. (7)

The role of γ in (7) is to vary the distribution of the posterior over
W . As γ → ∞, p(W |X,Λ, Φ) will approach a uniform distribu-
tion; as γ → 0 the distribution will approach a Kronecker delta with
mass at the most likely path. The factor γ is commonly used in dis-
criminative training algorithms such as MMIE [7].

The role of (α, β, γ) in language recognition is difficult to de-
termine. For example, we may want to use an α and β different
from the STT decode (in the extreme case β = 0) to emphasize the
acoustic model more and the STT language model less. We may
also want to increase γ to increase the contribution of non-optimal
paths in the computation of expected counts. We explore these issues
experimentally in Section 4.

3. SUPPORT VECTOR MACHINES FOR TOKEN-BASED
LANGUAGE RECOGNITION

A support vector machine, f(x), is a two-class classifier formed
from sums of a kernel function, k(·, ·),

f(x) =
X

i

αik(x, xi) + d. (8)

The weights αi > 0 and d are trained using an optimization al-
gorithm, and the xi, called support vectors, are selected from a la-
beled training data set. The kernel is expressible as inner product,
k(x, y) = b(x)tb(y), where b(·) is usually in a high dimensional
space. This inner product form also allows the SVM to be written as
f(x) = wtb(x) + d.

Token-based language recognition using SVMs can be per-
formed in several ways [8, 9, 10]. We focus on an approach which is
similar to [8, 10, 11]. In [11], a token sequence, W = w1, · · · , wN ,
is modeled using a bag-of-n-grams approach. For a sequence of to-
kens, (joint) probabilities of the unique n-grams, ŵjwj , on a per
conversation basis are calculated, p(ŵj , wj |W ). As an example, for
words, a typical bigram might be ŵ2w2 = the example. Then, the
probabilities are mapped to a sparse vector with entries

Djp(ŵj , wj |W ). (9)

The selection of the weighting, Dj , in (9) is critical for good perfor-
mance. A typical choice is something of the form

Dj = min

„
Cj , gj

„
1

p(ŵj , wj |all)
««

(10)

where gj(·) is a function which squashes the dynamic range, and
Cj is a constant. The probability p(ŵj , wj |all) in (10) is calculated
from the observed probability across all classes. The squashing func-
tion should monotonically map the interval [1,∞) to itself to supress
large inverse probabilities. Typical choices for gj are gj(x) =

√
x

and gj(x) = log(x) + 1. In both cases, the squashing function
gj normalizes out the typicality of a feature across all classes. The
constant Cj limits the effect of any one feature on the kernel inner
product. If we set Cj = 1, then this makes Dj = 1 for all j.

The general weighting of probabilities is then combined to form
a kernel between two token sequences, see [12] for more details. For
two token sequences, W and V , the kernel is

K(W, V ) =
X

j

D2
j p(ŵj , wj |W )p(ŵj , wj |V ). (11)

Intuitively, the kernel in (11) says that if the same n-grams are
present in two sequences and the normalized frequencies are similar
there will be a high degree of similarity (a large inner product). If n-
grams are not present, then this will reduce similarity since one of the
probabilities in (11) will be zero. The normalization Dj insures that
n-grams with large probabilities do not dominate the kernel func-
tion. The kernel can alternatively be viewed as a linearization of the
log-likelihood ratio [12].

Incorporating the kernel (11) into an SVM system is straight-
forward. SVM training and scoring require only a method of ker-
nel evaluation between two objects that produces positive definite
kernel matrices (the Mercer condition). We use the package SVM-
Torch [13]. Training is performed with a one-versus-all strategy. For
each target language, we group all remaining language data into an-
other class and then train with these two classes.
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Extending (11) to lattices is straightforward. Rather than com-
puting the probability p(ŵj , wj |W ) using counts from the 1-best
sequence, expected counts from a lattice can be used.

The SVM resulting from the kernel in (11) has similarities with
the log perplexity scoring (3) described in Section 2. If we simplify
the SVM by explicitly expanding the kernel using (8) and (11), we
obtain

f(W ) =
X

j

mjp(ŵj , wj |W ) + d (12)

where mj =
P

i αiD
2
j p(ŵj , wj |Wi), and the Wi are the support

vectors. We can see that if mj = log p(wj |ŵj , L) then the SVM
model matches the standard log perplexity scoring [10].

Several additional items should be noted about the kernel in (11).
First, the choice of squashing function and Cj interacts with the to-
ken type in many ways. For tokens like phones, it is not uncommon
to see all unigrams and bigrams in a conversation; gj(x) =

√
x

and Cj = ∞ works well in this case. For tokens that are infre-
quently repeated such as words, there may be many small expected
counts which causes small probabilities in both the background and
a given conversation. We have found that a more aggressive squash-
ing function, gj(x) = log(x) + 1 and a Cj = ∞ as an example,
limit the possibility of one n-gram dominating the inner product. Of
course, an alternate approach would be to prune out low-frequency
features—essentially a feature selection process. Secondly, for the
kernel (11), different n-gram types can be combined by summing
kernels for different n. That is, for example, we can calculate a new
kernel using a sum of a unigram kernel and a bigram kernel.

4. EXPERIMENTS

4.1. Experimental Setup

For our experiments, we used the NIST LRE 2005 data set and the
30 second task. We split this data set into two parts by random se-
lection resulting in two data sets of approximately 1800 utterances.
One of these data sets was used for training language recognition
models and the other half was used for testing. This setup was used
to minimize the amount of STT decoding and as a proof of concept.

For language recognition, we used the BBN Byblos English STT
system [14] to produce lattices. SVM models were trained using
the kernel given in (11) with squashing function log(x) + 1 and
Cj = ∞. For the SVM, the kernel used both unigram and bigram
probabilities. SVM models for the target languages for the NIST
evaluation task were produced using SVMTorch using c = 10 for
regularization.

We did not use any backend fusion process for scoring as in [8].
Instead, we computed likelihood ratios across languages assuming
that the SVM score can be treated approximately as a log likelihood
ratio [8]. Although this impacts performance, it allows us to avoid
decoding and scoring on a separate development set.

4.2. Decoding Experiments

We experimented with multiple decoding strategies to determine the
best approach for language recognition. Segmentation for decoding
was performed using a GMM-based speech activity detection sys-
tem. Byblos was applied to these segments and output lattices were
considered after two major passes. The first pass considered, UDEC,
produced lattices from an unadapted decode of the input segments.
The other pass considered, ADEC, was the final decode from the
system using various forms of adaptation. A 1-best path was derived
from the lattices of the UDEC pass.

We examined several 1-best outputs of the STT system to see
how the decoder responded to non-English inputs. Interestingly, the
system responded with nonsensical outputs containing a large vari-
ety of vocabulary and structure. As an example, for a section of the
Mandarin utterance lid00020, the following output was produced:

... Um ... Which I don’t know if I can I could be
tempting though ...

Anecdotally, the output produced by the recognizer could be “under-
stood” while listening to the speech.

We then performed recognition experiments using the various
decoding passes. Performance was measured using the equal error
rate (EER). We initially considered only an English/non-English de-
tection task (English), but then expanded to the complete 7 target
language task in the NIST LRE (7L) with no out-of-class inputs. Ex-
pected counts were computed from the lattices using standard Byb-
los acoustic model and language model weights and a γ, see (7), that
made the language model exponent β/γ approximately 1/5. We
will comment more on this choice in Section 4.3. Results are sum-
marized in Table 1.

From Table 1, we can see several properties of the system. First,
not only is the system able to do English/non-English detection, it
is also able to differentiate non-English languages based on STT
output. This implies the STT system is producing systematically
structured lattices even for atypical input data. Second, lattice-based
methods outperform a 1-best approach; this intuitively should be the
case since a lattice has more information content. Third, the UDEC
pass outperforms the ADEC pass. The likely source of this degra-
dation is that the ADEC pass is performed using the UDEC lattice
as a constraint. The combination of this constraint, sharper adapted
acoustic models, and pruning combine to a create a lattice that is not
as complex in the ADEC pass.

4.3. Varying posterior parameters

We next considered varying the parameters for the exponents shown
in (7). Results are shown in Table 2. From the table, we see that a
large γ value improves accuracy. This result implies that the dif-
ferent hypothesis in the lattice should be weighted more equally
when computing expected counts. Another observation is that the
language model only (α, β) = (0, 1) and acoustic model only
(α, β) = (1/12, 0) results are similar. This may be because pruning
of the large search space is biased by a large weight on the language
model. Overall, these parameters are not highly sensitive, except
that γ must be large.

4.4. Comparisons and Fusion

We compared the SVM word system to multiple systems and also
fused the results. As a baseline, we considered the log-likelihood

Table 1. Comparison of EER for different decoding passes using an
SVM language recognition system with word lattices

Task Decode Pass EER (%)

English 1-best 14.2
English UDEC 5.6
English ADEC 9.8

7L 1-best 14.2
7L UDEC 11.5
7L ADEC 18.4
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Table 2. Comparison of EER for different weightings for posterior
computation

α β γ EER Eng (%) EER 7L (%)

1/6 1 1 7.4 14.1
1/12 1 1 6.5 13.6
1/12 1 2 5.6 11.9
1/12 1 5 5.6 11.5
1/12 1 1000 5.6 11.4
1/12 0 5 5.8 11.4

0 1 5 5.8 11.7

Table 3. Comparison of EER for different LID systems and fusion

System EER Eng (%) EER 7L (%)

UDEC STT log likelihood 30.7 -
ADEC STT log likelihood 24.8 -

Phone SVM 5.7 8.2
Word SVM 5.6 11.4

Fuse SVM phone & word 3.2 6.2

per frame output by the recognizer as an English/non-English detec-
tor. We also included an SVM phone system based upon 6 OGI-TS
trained tokenizers, see [8]. The SVM phone system was trained on
the same data set as the SVM word system. Finally, we fused the
SVM phone system with the SVM word system (fusion) using an
equally weighted linear combination of SVM outputs.

Results are shown in Table 3 and Figure 1. From the table, we
see that using the raw log-likelihood score from the STT system is
not a good English/non-English detector. Interestingly, the ADEC
pass performance is better than the UDEC pass which contrasts to
the opposite performance we obtained with the SVM system in Sec-
tion 4.2. The SVM phone system performs better than the SVM
word system on the 7L task—this might be expected since the SVM
phone system has smaller acoustic units. Finally, note that the fusion
of the SVM word and SVM phone system performs significantly bet-
ter showing the potential of the new approach in conjunction with
standard approaches.

5. CONCLUSIONS

We have successfully demonstrated the use of SVMs and word lat-
tices for language recognition. The SVM word system performed
well on a standard NIST LRE data set. We addressed several key is-
sues necessary for tuning performance—lattice generation and pos-
terior calculation. Potential future work includes comparing the ap-
proach to standard language modeling methods, applying the meth-
ods on a larger data set, and using advanced fusion methods.
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